精英家教网 > 高中数学 > 题目详情
18、盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ε.求随机变量ε的分布及期望Eε.
分析:首先分析题目已知第一次从盒子中任取1个球,放回后第二次再任取1个球.记第一次与第二次取到球的标号之和为ε.则可分析得到随机变量ε可以取值是2、3、4、6、7、10.然后分别求出概率即可得到分布.然后根据期望公式求出期望值即可.
解答:解:由题意可得,随机变量ε的取值是2、3、4、6、7、10.
随机变量ε的概率分布如下
当ε=2,P(ε=2)=0.09
当ε=3,P(ε=3)=0.24
当ε=4,P(ε=4)=0.16
当ε=6,P(ε=6)=0.18
当ε=7,P(ε=7)=0.24
当ε=10,P(ε=10)=0.09
则随机变量ε的数学期望
Eε=2×0.09+3×0.24+4×0.13+6×0.18+7×0.24+10×0.09=5.2.
点评:此题主要考查离散型随机变量的期望的计算问题,对于此类实际应用的问题,需要仔细分析题目中的已知关系,然后对照所学的相关知识求解即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

盒子中有大小相同的球6个,其中标号为1的球2个,标号为2的球3个.标号为3的球1个,第一次从盒子中任取1个球,放回后第二次再任取1个球 (假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(1)求随机变量ξ的分布列:
(2)求随机变量ξ的期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(Ⅰ)求随机变量ξ的分布列;
(Ⅱ)求随机变量ξ的期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年浙江卷理)(本题满分12分)
盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个。第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同),记第一次与第二次取到球的标号之和为x
(1)求随机变量x的分布列;
(2)求随机变量x的期望Ex

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省潮州市金山中学高二(下)4月模块数学试卷(理科)(解析版) 题型:解答题

盒子中有大小相同的球6个,其中标号为1的球2个,标号为2的球3个.标号为3的球1个,第一次从盒子中任取1个球,放回后第二次再任取1个球 (假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(1)求随机变量ξ的分布列:
(2)求随机变量ξ的期望Eξ.

查看答案和解析>>

同步练习册答案