【题目】已知函数
(1)若,证明;
(2)若,求的取值范围;并证明此时的极值存在且与无关.
【答案】(1)见解析(2)见解析
【解析】试题分析:
(1)利用题意求解导函数,求解 得到函数的单调递增区间,求解 得到函数的单调递减区间,由 可以得出结论;
(2)将 变形为,构造函数结合函数的性质即可求得实数 的取值范围;分类讨论 和两种情况即可证明此时的极值存在且与无关.
试题解析:
(1)若
当单调递减;当单调递增
所以,得证
(1)若,变形得到,
令,得到
,令,可得在单增,在单减,所以,
在单减,当所以,∴
(注:若令),得到
令,
,所以在单减,在单增,所以,
即在单增,当所以,∴
下面再证明的极值存在且与无关:
①,
与无关.
②
(其中)所以且在处取极小值
因为,∴是关于的函数(与无关),
所以也是关于的函数(与无关).
科目:高中数学 来源: 题型:
【题目】经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了该农产品.以()表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将表示为的函数;
(Ⅱ)根据直方图估计利润不少于57000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知动直线过点,且与圆交于、两点.
(1)若直线的斜率为,求的面积;
(2)若直线的斜率为,点是圆上任意一点,求的取值范围;
(3)是否存在一个定点(不同于点),对于任意不与轴重合的直线,都有平分,若存在,求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆 的上、下顶点分别为A,B,点P在椭圆上,且异于点A,B,直线AP,BP与直线 分别交于点M,N,
(1)设直线AP,BP的斜率分别为 ,求证: 为定值;
(2)求线段MN的长的最小值;
(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2, .M,N分别为BC和CC1的中点,P为侧棱BB1上的动点.
(1)求证:平面APM⊥平面BB1C1C;
(2)若P为线段BB1的中点,求证:A1N∥平面APM;
(3)试判断直线BC1与平面APM是否能够垂直.若能垂直,求PB的值;若不能垂直,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】京剧是我国的国粹,是“国家级非物质文化遗产”,某机构在网络上调查发现各地京剧票友的年龄服从正态分布同时随机抽取位参与某电视台《我爱京剧》节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在内),样本数据分别区间为由此得到如图所示的频率分布直方图.
(Ⅰ) 若求的值;
(Ⅱ)现从样本年龄在的票友中组织了一次有关京剧知识的问答,每人回答一个问题,答对赢得一台老年戏曲演唱机,答错没有奖品,假设每人答对的概率均为,且每个人回答正确与否相互之间没有影响,用表示票友们赢得老年戏曲演唱机的台数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 平面, , , 为线段上的点,
(1)证明: 平面;
(2)若是的中点,求与平面所成的角的正切值;
(3)若满足面,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com