精英家教网 > 高中数学 > 题目详情
18.执行如图所示程序框图,输出的k值为(  )
A.3B.4C.5D.6

分析 模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=$\frac{1}{4}$时满足条件a≤$\frac{1}{4}$,退出循环,输出k的值为5.

解答 解:模拟执行程序框图,可得
k=1,a=4,q=$\frac{1}{2}$
a=2,k=2
不满足条件a≤$\frac{1}{4}$,a=1,k=3
不满足条件a≤$\frac{1}{4}$,a=$\frac{1}{2}$,k=4
不满足条件a≤$\frac{1}{4}$,a=$\frac{1}{4}$,k=5
满足条件a≤$\frac{1}{4}$,退出循环,输出k的值为5.
故选:C.

点评 本题主要考查了循环结构的程序框图,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,点(4,3)到直线3x-4y+a=0的距离为1,则实数a的值是±5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{xn}满足${x}_{1}=\frac{1}{2}$,且${x}_{n+1}=\frac{{x}_{n}}{2-{x}_{n}}(n∈{N}^{+})$
(1)用数学归纳法证明:0<xn<1;
(2)设${a}_{n}=\frac{1}{{x}_{n}}$,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.长方体ABCD-A1B1C1D1中,对角线A1C与棱CB、CD、CC1所成角分别为α、β、γ,则sin2α+sin2β+sin2γ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.两个事件互斥是这两个事件对立的必要不充分(填充分不必要、必要不充分、充分必要条件、既不充分又不必要)条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设点E,F分别是棱长为2的正方体ABCD-A1B1C1D1的棱BC,BB1的中点.如图,以D为坐标原点,$\overrightarrow{DA}$,$\overrightarrow{DC}$,$\overrightarrow{D{D_1}}$为x轴、y轴、z轴正方向,建立空间直角坐标系.
(I)求$\overrightarrow{{A_1}E}•\overrightarrow{{D_1}F}$;
(II)若点M,N分别是线段A1E与线段D1F上的点,问是否存在直线MN,使得MN⊥平面ABCD?若存在,求点M,N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算:
(1)$2{log_3}2-{log_3}\frac{32}{9}+{log_3}8-{5^{{{log}_5}3}}$
(2)${0.064^{-\frac{1}{3}}}-{({-\frac{1}{8}})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}+2{log_3}6-{log_3}12$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆心为C 的圆经过点A(-3,2)和点B(1,0),且圆心C在直线y=x+1上.
(1)求圆C的标准方程.
(2)已知线段MN的端点M的坐标(3,4),另一端点N在圆C上运动,求线段MN 的中点G的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于2$\sqrt{7}$和4$\sqrt{3}$,M、N分别为AB、CD的中点,每两条弦的两端都在球面上运动,有下面四个命题:
①MN的最大值为5    
②弦AB、CD可能相交于点M
③MN的最小值为1    
④弦AB、CD可能相交于点N
其中真命题为②.

查看答案和解析>>

同步练习册答案