精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,试判断零点的个数;

(Ⅲ)当时,若对,都有)成立,求的最大值.

【答案】(1)当时,的单减区间为;当时,的单减区间为,单增区间为;(2)两个;(3)0.

【解析】

1)求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)当时,由(1)可知,是单减函数,在是单增函数,由,利用零点存在定理可得结果;(3)当为整数,且当时,恒成立,,利用导数求出的取值范围,从而可得结果.

(1)

.

时,恒成立,

是单减函数.

时,令,解之得.

从而,当变化时,的变化情况如下表:

-

0

+

单调递减

单调递增

由上表中可知,是单减函数,在是单增函数.

综上,当时,的单减区间为

时,的单减区间为,单增区间为.

(2)当时,由(1)可知,是单减函数,在是单增函数;

.

有两个零点.

(3)当为整数,且当时,恒成立

.

,只需

由(2)知,有且仅有一个实数根

上单减,在上单增;

代入式,得

.

为增函数,

.

即所求的最大值为0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a11{bn}满足bn2nanb310,且{bn}是等差数列.

1)求数列{an}的通项;

2)求数列{an}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的圆心为的圆心为,一动圆与圆内切,与圆外切.

(1)求动圆圆心的轨迹的方程;

(2)过点的直线交曲线两点,交直线于点,是否存在实数,使得成立?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知点A(2,0)B(2,0),动点M(x,y)满足直线AMBM的斜率之积为.M的轨迹为曲线C.

1)求C的方程,并说明C是什么曲线;

2)过坐标原点的直线交CPQ两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G.

i)证明:是直角三角形;

ii)求面积的最大值.

(二)选考题:共10请考生在第2223题中任选一题作答。如果多做,则按所做的第一题计分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,又有四个零点,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,分别为椭圆的左,右焦点,椭圆上点的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的,则椭圆的离心率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;

(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(请写出式子在写计算结果)有4个不同的小球,4个不同的盒子,现在要把球全部放入盒内:

1)共有多少种方法?

2)若每个盒子不空,共有多少种不同的方法?

3)恰有一个盒子不放球,共有多少种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面ABCD,底部ABCD为菱形,ECD的中点.

(Ⅰ)求证:BD⊥平面PAC

(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE

(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

查看答案和解析>>

同步练习册答案