精英家教网 > 高中数学 > 题目详情
已知点P是函数f(x)=cosx(0≤x≤
π
3
)图象上一点,则曲线y=f(x)在点P处的切线斜率的最小值为
 
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用,三角函数的求值
分析:求出函数的导数,求出切线的斜率,再由正弦函数的单调性,即可求得范围.
解答: 解:函数f(x)=cosx的导数f′(x)=-sinx,
设P(m,cosm),则曲线y=f(x)在点P处的切线斜率为f′(m)=-sinm,
由于0≤m≤
π
3
,则0≤sinm≤
3
2

则-
3
2
≤-sinm≤0,
则在点P处的切线斜率的最小值为-
3
2

故答案为:-
3
2
点评:本题考查导数的几何意义,考查运用三角函数的性质求切线的斜率的范围,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|x2-(a+4)x+4a=0,a∈R},B={x|x2-5x+4=0}.求
(Ⅰ)若A∩B=A,求实数a的值;
(Ⅱ)求A∪B,A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

一圆在x、y轴上分别截得弦长为14和4,且圆心在直线2x+3y=0上,求此圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,若a=4,b=3,A=2B,则sinB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若|
a
|=
2
,|
b
|=2,(
a
-
b
)⊥
a
,则
a
b
的夹角是(  )
A、
12
B、
π
3
C、
π
6
D、
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:x+4y=2与圆C:x2+y2=1交于A、B两点,O是坐标原点,若直线OA、OB的倾斜角分别为α,β,则sinα+sinβ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(b+1)x+1是定义在[a-2,a]上的偶函数,g(x)=f(x)+|x-t|,其中a,b,t均为常数.
(1)求实数a,b的值;
(2)试讨论函数y=g(x)的奇偶性;
(3)若-
1
2
≤t≤
1
2
,求函数y=g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2sin(
2
+α)+sin(π-α)=0,
(Ⅰ)求tanα的值;
(Ⅱ)若α是第三象限角,(1)求cosα的值;(2)求sin(2α+
π
6
)-cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,使用模拟方法估计圆周率值的程序框图,P表示估计的结果,则图中空白框内应填入P=(  )
A、
M
1000
B、
1000
M
C、
4M
1000
D、
1000
4M

查看答案和解析>>

同步练习册答案