精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是 (  )

A. “若,则,或”的否定是“若,或

B. a,b是两个命题,如果a是b的充分条件,那么的必要条件.

C. 命题“,使 得”的否定是:“,均有

D. 命题“ 若,则”的否命题为真命题.

【答案】B

【解析】

由命题的否定,判断A的正误;由充要条件的定义和逆否命题判断B的正误,由特称命题的否定判断C的正误;由命题的否命题判断D的正误.

因为命题的否定只否定结论,所以“若,则 ,或”的否 定 是 “若,故A错;

因为a 是 b的 充 分 条 件,所以由a能推出b,所以能推出,即的 必 要 条 件,故B正确;

命题,使 得”的 否 定 是:“,均有 ,C错;

命 题“ 若,则”的否命题为:若,则,所以否命题为假命题,故D错;

故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】斜率为k的直线l经过抛物线yx2的焦点F,且与抛物线相交于AB两点,若线段|AB|的长为8.

(1)求抛物线的焦点F的坐标和准线方程;

(2)求直线的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中),记函数的导函数为

(Ⅰ)求函数的单调区间;

(Ⅱ)是否存在实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;

(Ⅱ)若曲线与曲线相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,平行于轴且过点的入射光线被直线反射,反射光线轴于点,圆过点,且与相切.

(Ⅰ)求所在直线的方程;

(Ⅱ)求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】语文中有回文句,如:上海自来水来自海上,倒过来读完全一样。数学中也有类似现象,如:88,454,7337,43534等,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为回文数”!

二位的回文数有11,22,33,44,55,66,77,88,99,共9个;

三位的回文数有101,111,121,131,…,969,979,989,999,共90个;

四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个;

由此推测:11位的回文数总共有_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数,).

(1)若函数仅有一个极值点,求实数的取值范围;

(2)证明:当时,有两个零点).且满足.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:

组号

1

2

3

4

5

温差

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.

(1)若选取的是第组的数据,求出关于的线性回归方程

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在D上的函数fx),如果满足对任意x∈D,存在常数M0,都有|fx|≤M成立,则称fx)是D上的有界函数,其中M称为函数fx)的上界,已知函数fx=1+x+ax2

1)当a=﹣1时,求函数fx)在(﹣∞0)上的值域,判断函数fx)在(﹣∞0)上是否为有界函数,并说明理由;

2)若函数fx)在x∈[14]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案