精英家教网 > 高中数学 > 题目详情

【题目】有如下四个命题:

①甲乙两组数据分别为甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67.则甲乙的中位数分别为45和44.

②相关系数,表明两个变量的相关性较弱.

③若由一个22列联表中的数据计算得的观测值,那么有95%的把握认为两个变量有关.

④用最小二乘法求出一组数据的回归直线方程后要进行残差分析,相应于数据的残差是指.

以上命题“错误”的序号是_________________

【答案】

【解析】

利用中位数、相关系数、的观测值、残差分析的相关知识逐个分析即可。

①由甲的数据可知它的中位数为45,乙的中位数为,故正确;

②相关系数时,两个变量有很强的相关性,故②错误;

③由于的观测值,满足,故有95%的把握认为两个变量有关,所以③正确;

④用最小二乘法求出一组数据的回归直线方程后要进行残差分析,相应于数据的残差是指,是正确的。

故答案为②.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,的中点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的左、右焦点分别为,过作垂直于轴的直线与椭圆在第一象限交于点,若,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)是椭圆上位于直线两侧的两点.若直线过点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合是满足下列性质的函数的全体:在定义域内存在实数,使得成立.

1)已知函数,判断 函数是否属于集合

2)若函数属于集合,试求实数的取值范围;

3 证明函数属于集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;

2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又有零点的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市春节大酬宾,购物满100元可参加一次抽奖活动,规则如下:顾客将一个半径适当的小球放入如图所示的容器正上方的人口处,小球在自由落下的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,顾客相应获得袋子里的奖品.已知小球每次遇到黑色障碍物时,向左向右下落的概率都为.若活动当天小明在该超市购物消费108元,按照活动规则,他可参加一次抽奖,则小明获得A袋中的奖品的概率为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:

1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?

2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?

查看答案和解析>>

同步练习册答案