巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.
⑴;⑵椭圆的焦距的取值范围是.
解析试题分析:⑴,,再将点的坐标代入椭圆的方程,这样便有三个方程,三者联立,即可求出,从而得椭圆的方程.⑵显然斜率不存在或斜率等于0时,不可能满足题意.故可设直线l的方程为:,这样可将点C(2,0)关于直线l的对称点的坐标用表示出来,然后代入椭圆的方程,从而得一关于的方程:.设,因此原问题转化为关于t的方程有正根.根据二次方程根的分布可得.进而求得椭圆的焦距的取值范围.
试题解析:⑴,
∵点P(2,1)在椭圆上,∴ 5分
⑵依题意,直线l的斜率存在且不为0,则直线l的方程为:.
设点C(2,0)关于直线l的对称点为,则
若点在椭圆上,则
设,因此原问题转化为关于t的方程有正根.
①当时,方程一定有正根;
②当时,则有
∴综上得.
又椭圆的焦距为.
故椭圆的焦距的取值范围是(0,4] 14分
考点:1、椭圆的方程;2、直线与椭圆.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为、,上、下顶点分别为、.设直线的倾斜角的正弦值为,圆与以线段为直径的圆关于直线对称.
(1)求椭圆E的离心率;
(2)判断直线与圆的位置关系,并说明理由;
(3)若圆的面积为,求圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的左、右焦点分别为,离心率,连接椭圆的四个顶点所得四边形的面积为.
(1)求椭圆C的标准方程;
(2)设是直线上的不同两点,若,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面上的动点P(x,y)及两个定点A(-2,0),B(2,0),直线PA,PB的斜率分别为K1,K2且K1K2=-
(1).求动点P的轨迹C方程;
(2).设直线L:y=kx+m与曲线C交于不同两点,M,N,当OM⊥ON时,求O点到直线L的距离(O为坐标原点)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,已知,,是椭圆上不同的三点,,,在第三象限,线段的中点在直线上.
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点在椭圆上(异于点,,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切于点.
(1)求的值及椭圆的标准方程;
(2)设动点满足,其中M、N是椭圆上的点,为原点,直线OM与ON的斜率之积为,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.
(1)当点在圆上运动时,求点的轨迹方程;
(2)已知,是曲线上的两点,若曲线上存在点,满足(为坐标原点),求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线.
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;
(3)若过正半轴上点的直线与该抛物线交于两点,为抛物线上异于的任意一点,记连线的斜率为试求满足成等差数列的充要条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com