精英家教网 > 高中数学 > 题目详情

【题目】有一块以点O为圆心,半径为2百米的圆形草坪,草坪内距离O点 百米的D点有一用于灌溉的水笼头,现准备过点D修一条笔直小路交草坪圆周于A,B两点,为了方便居民散步,同时修建小路OA,OB,其中小路的宽度忽略不计.

(1)若要使修建的小路的费用最省,试求小路的最短长度;
(2)若要在△ABO区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求这块圆形广场的最大面积.(结果保留根号和π)

【答案】
(1)解:小路的长度l=OA+OB+AB=(400+AB)米,

要使小路的长度最短,只需AB最短即可.

当OD⊥AB时,圆心距d最长为OD,此时AB最短,

(AB)min=2 ×2=200 米,

∴小路的最短长度为(4+2 )(百米).


(2)依题意,圆形广场内切于△ABO时,这块圆形广场的最大面积.

设△ABO的内切圆半径为r,

则有 =

由弦长公式得AB=2

令AB=x,则r2=f(x)=

,∴x=AB=2

,∴ =6﹣4

这块圆形广场的最大面积s=πr2=(6﹣4 )π(百米2


【解析】(1)先写出小路长度的函数解析式,再利用弦长公式可得AB的最小值,进而可得小路的最短长度;(2)先令AB=x,利用已知条件可得r2用含有x的式子表示,再设r2=f(x),对f(x)求导,判断f(x)的单调性,进而可得f(x)的最大值,从而可得这块圆形广场的最大面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则函数g(x)=f(f(x))﹣2在区间(﹣1,3]上的零点个数是(  )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 经过点 ,左右焦点分别为F1、F2 , 圆x2+y2=2与直线x+y+b=0相交所得弦长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设Q是椭圆C上不在x轴上的一个动点,O为坐标原点,过点F2作OQ的平行线交椭圆C于M、N两个不同的点
⑴试探究 的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.
⑵记△QF2M的面积为S1 , △OF2N的面积为S2 , 令S=S1+S2 , 求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,过点P(0,1)且互相垂直的两条直线分别与
圆O:x2+y2=4交于点A,B,与圆M:(x﹣2)2+(y﹣1)2=1交于点C,D.

(1)若 ,求CD的长;
(2)若CD中点为E,求△ABE面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当实数x,y满足 时,1≤ax+y≤4恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知直线l的普通方程为x﹣y﹣2=0,曲线C的参数方程为 (θ为参数),设直线l与曲线C交于A,B两点.若点P在曲线C上运动,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售收入为25﹣x万元(国家规定大货车的报废年限为10年).
(1)大货车运输到第几年年底,该车运输累计收入超过总支出?
(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大?(利润=累计收入+销售收入﹣总支出)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧面ADD1A1⊥底面ABCD,D1A=D1D= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.

(Ⅰ)求证:A1O∥平面AB1C;
(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市随机抽取部分企业调查年上缴税收情况{单位万元,将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100]样本数据分组为[0,20),[20,40)[40,60)[60,80),[80,100)

(1)求直方图中x的值;
(2)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;
(3)从企业中任选4个,这4个企业年上缴税收少于20万元的个数记为X,求X的分布列和数学期望(以直方图中的频率作为概率)

查看答案和解析>>

同步练习册答案