精英家教网 > 高中数学 > 题目详情
12.已知z是复数,z+2i与$\frac{z}{1-i}$均为实数(i为虚数单位)且复数(z+ai)2在复平面内对应的点在第一象限,求实数a的取值范围.

分析 利用已知条件求出z,然后化简复数(z+ai)2,利用对应点的坐标在第一象限,即可求解a的范围.

解答 解:z是复数,z+2i与$\frac{z}{1-i}$均为实数,
可设z=a-2i,$\frac{a-2i}{1-i}$=$\frac{(a-2i)(1+i)}{2}$=$\frac{2+a+(a-2)i}{2}$,可得a=2.
复数(z+ai)2=(2-2i+ai)2=-a2+4a+4(a-2)I,复数(z+ai)2在复平面内对应的点在第一象限,
可得:$\left\{\begin{array}{l}{-{a}^{2}+4a>0}\\{a-2>0}\end{array}\right.$,
解得a∈(2,4).

点评 本题考查复数的基本运算,复数的几何意义,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,AB、CD是⊙O的两条弦,且AB是线段CD的中垂线,已知AB=6,CD=2$\sqrt{5}$,则线段AC的长度为(  )
A.5B.$\sqrt{35}$C.$\sqrt{30}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$.
(1)求|$\overrightarrow{a}$-2$\overrightarrow{b}$|的值;
(2)设向量$\overrightarrow{p}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{q}$=$\overrightarrow{a}$-2$\overrightarrow{b}$,求向量$\overrightarrow{p}$在$\overrightarrow{q}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x=8,y=18,则$\frac{x+y}{\sqrt{x}-\sqrt{y}}$-$\frac{2xy}{x\sqrt{y}-y\sqrt{x}}$的值为(  )
A.-$\sqrt{2}$B.4C.$\sqrt{3}$D.9$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{an}中,a1=4,an+1=an+5,那么这个数列的通项公式是an=5n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以(0,3)为圆心且与y=$\frac{4}{3}$x相切的圆与单位圆的位置关系为(  )
A.外离B.内含C.相交D.相切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知($\frac{1}{x}$-$\sqrt{x}$)n的展开式中只有第四项的二项式系数最大,则展开式中的常数项等于15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中正确的是(  )
A.若a>b,则ac2>bc2B.若a>b,则a2>b2
C.若a>b,c>d,则ac>bdD.若a>b,c<d,则a-c>b-d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.A高校自主招生设置了先后三道程序,部分高校联合考试、本校专业考试、本校面试,在每道程序中,设置三个成绩等级:优、良、中,若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序,考生只有全部通过三道程序,自主招生考试才算通过,某中学学生甲参加A高校自主招生考试,已知该生在每道程序中得优、良、中的概率分别为$\frac{1}{4}$,$\frac{1}{2}$,$\frac{1}{4}$.
(1)求学生甲能通过A高校自主招生考试的概率;
(2)求学生甲在本次自主招生中获优次数为0的概率;
(3)设ξ为学生甲在本次自主招生中通过的程序次数,求ξ得分布列及ξ的期望.

查看答案和解析>>

同步练习册答案