精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,设不等式组 
y≥0
x-y+1≥0
x+y-4≤0
,表示的平面区域为D,在D内任取一整点P(横、纵坐标都是整数)测P落在区域 
-1≤x≤1
0≤y≤1
内的概率为(  )
A、
4
23
B、
8
23
C、
5
12
D、
5
6
考点:古典概型及其概率计算公式
专题:概率与统计
分析:作出不等式组对应的平面区域,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图,则平面区域内的整点个数为12个,
则P落在区域 
-1≤x≤1
0≤y≤1
内的个数为5个,
故对于的概率为
5
12

故选:C
点评:本题主要考查古典概型的概率的计算,利用数形结合作出平面区域是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,有命题“若m+n=p+q,则an+am=ap+aq”在等比数列{bn}中,你得出的类似命题是“若
 
,则
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)满足下列条件:(1)f(-1)=-1,f(0)=0,f(1)=1.(2)对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1-x2),则当n>2,n∈N*时,[f(x)]n+[g(x)]n的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且Sn=2an-p,其中p是不为零的常数.
(1)证明:数列{an}是等比数列
(2)当p=2时,若数列{bn}满足bn+1=bn+an(n∈N*),b1=2,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinx的一个单调递调增区间是(  )
A、(-
π
6
6
B、(-
6
π
6
C、[-
π
2
π
2
]
D、(-
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数g(x)=(m2-2)xm(m∈R)在(0,+∞)为减函数,已知f(x)是对数函数且f(-m+1)+f(-m-1)=
1
2

(1)求g(x),f(x)的解析式;
(2)若实数a满足f(2a-1)<f(5-a),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-a)2+(y-b)2=1,平面区域Ω:
x+y-8≤0
x-y+4≥0
y≥0
,若圆心C∈Ω,且圆C与y轴相切,则a2+b2的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l的方程为ax+by+c=0,(a,b不同时为零),则下列命题正确的是
 

(1)以方程ax+by+c=0的解为坐标的点都在直线l上;
(2)方程ax+by+c=0可以表示平面坐标系中的任意一条直线;
(3)直线l的一个法向量为(a,b);
(4)直线l的倾斜角为arctan(-
a
b
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
-ax,若
1
16
<a<
1
2
,则f(x)零点所在区间为(  )
A、(0,
1
4
B、(
1
16
1
4
C、(
1
4
1
2
D、(
1
2
,1)

查看答案和解析>>

同步练习册答案