精英家教网 > 高中数学 > 题目详情

【题目】设抛物线的焦点为,准线为为抛物线过焦点的弦,已知以为直径的圆与相切于点.

1)求的值及圆的方程;

2)设上任意一点,过点的切线,切点为,证明:.

【答案】12;(2)证明见解析.

【解析】

1)由题意得的方程为,根据为抛物线过焦点的弦,以为直径的圆与相切于点..利用抛物线和圆的对称性,可得,圆心为,半径为2.

2)设的方程为,代入的方程,得,根据直线与抛物线相切,令,得,代入,解得.代入的方程,得,得到点N的坐标为,然后求解.

1)解:由题意得的方程为

所以,解得.

又由抛物线和圆的对称性可知,所求圆的圆心为,半径为2.

所以圆的方程为.

2)证明:易知直线的斜率存在且不为0

的方程为,代入的方程,

.

,得

所以,解得.

代入的方程,得,即点N的坐标为

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为200的调查样本,其中城镇户籍与农村户籍各100人;男性120人,女性80人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图,如图所示,其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )

A. 是否倾向选择生育二胎与户籍有关

B. 是否倾向选择生育二胎与性别有关

C. 倾向选择生育二胎的人群中,男性人数与女性人数相同

D. 倾向选择不生育二胎的人群中,农村户籍人数少于城镇户籍人数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)用表示中的最大值,设函数,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线上任意两点处的切线交于点,称阿基米德三角形”.当线段经过抛物线焦点时,具有以下特征:①点必在抛物线的准线上;②为直角三角形,且;③.若经过抛物线焦点的一条弦为,阿基米德三角形为,且点的纵坐标为4,则直线的方程为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:当时,有最小值,无最大值;

2)若在区间上方程恰有一个实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)证明:(i

ii)对任意恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4 — 4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为).

1)分别写出直线的普通方程与曲线的直角坐标方程;

2)已知点,直线与曲线相交于两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情期间,一同学通过网络平台听网课,在家坚持学习.某天上午安排了四节网课,分别是数学,语文,政治,地理,下午安排了三节,分别是英语,历史,体育.现在,他准备在上午下午的课程中各任选一节进行打卡,则选中的两节课中至少有一节文综学科(政治、历史、地理)课程的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上一动点,轴,轴上的射影分别为点,动点满足,记动点的轨迹为曲线.

(1)求曲线的方程;

(2)过点的直线与曲线交于两点,判断以为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案