精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow a=({sin({2x+\frac{π}{6}}),1})$,$\overrightarrow b=({\sqrt{3},cos({2x+\frac{π}{6}})})$,函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,A、B、C的对边分别是a、b、c,若$f(A)=\sqrt{3},sinC=\frac{1}{3},a=3$,求b的值.

分析 (Ⅰ)化简f(x)=2sin(2x+$\frac{π}{3}$),从而可得2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,从而解得;
(Ⅱ)化简可得A=$\frac{π}{6}$;再由sinC=$\frac{1}{3}$可得C<$\frac{π}{6}$,cosC=$\frac{2\sqrt{2}}{3}$,从而利用正弦定理求解.

解答 解:(Ⅰ)f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$sin(2x+$\frac{π}{6}$)+cos(2x+$\frac{π}{6}$)
=2sin(2x+$\frac{π}{3}$),
当2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,
即kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,(k∈Z),
函数f(x)单调递减,
故函数f(x)的单调递减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],(k∈Z);
(Ⅱ)f(A)=2sin(2A+$\frac{π}{3}$)=$\sqrt{3}$,
∴sin(2A+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
∴2A+$\frac{π}{3}$=2kπ+$\frac{π}{3}$或2A+$\frac{π}{3}$=2kπ+$\frac{2π}{3}$,
∴A=kπ或A=kπ+$\frac{π}{6}$,(k∈Z);
又∵A∈(0,π),∴A=$\frac{π}{6}$;
∵sinC=$\frac{1}{3}$,C∈(0,π),sinA=$\frac{1}{2}$,
∴C<$\frac{π}{6}$,cosC=$\frac{2\sqrt{2}}{3}$,
∴sinB=sin(A+C)=$\frac{\sqrt{3}+2\sqrt{2}}{6}$,
∴b=$\frac{3sinB}{sinA}$=$\sqrt{3}$+2$\sqrt{2}$.

点评 本题考查了平面向量的应用及三角恒等变换的应用,同时考查了解三角形的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),A1,A2是双曲线实轴的两个端点,MN是垂直于实轴所在直线的弦的两个端点,则A1M与A2N交点的轨迹方程是(  )
A.$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1B.$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1C.$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1D.$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=$\sqrt{3}$sinωx+cosωx(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为$\frac{π}{3}$,则f(x)的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图(甲),等腰直角三角形的底边AB=4,点D在线段AC上,DE⊥AB于点E,现将△ADE沿DE折起到△PDE的位置(如图(乙))
(Ⅰ)求证:PB⊥DE;
(Ⅱ)若PE⊥BE,PD=$\sqrt{2}$,求四棱锥P-DEBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$-2cos2$\frac{x}{2}$.
(Ⅰ)求f($\frac{π}{3}$)的值;
(Ⅱ)求函数f(x)的单调递减区间及对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC中,角A,B,C所对应的边分别为b,b,c,若$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(1)求角A的大小;
(2)若△ABC的面积为S,求$\frac{S}{\overrightarrow{AB}•\overrightarrow{AC}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=($\sqrt{2}$sinx,$\frac{{\sqrt{2}}}{2}$(cosx+sinx)),$\overrightarrow{b}$=(cosx,sinx-cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求y=f(x)的单调递增区间;
(Ⅱ)若将f(x)的图象向左平移$\frac{π}{4}$个单位,再将各点的纵坐标伸长为原来的2倍,横坐标不变,得到函数g(x)的图象.写出g(x)的解析式并在给定的坐标系中画出它在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,求甲、乙两楼的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个梯形采用斜二测画法作出其直观图,则其直观图的面积是原来梯形面积的(  )
A.$\frac{\sqrt{2}}{4}$倍B.$\frac{1}{2}$倍C.$\frac{\sqrt{2}}{2}$倍D.$\sqrt{2}$倍

查看答案和解析>>

同步练习册答案