精英家教网 > 高中数学 > 题目详情
(2012•威海一模)数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n-1,则a12+a22+a32+…+an2等于(  )
分析:由a1+a2+a3+…+an=3n-1,可求得an,从而可知an2,利用等比数列的求和公式即可求得答案.
解答:解:∵a1+a2+a3+…+an=3n-1,①
∴a1+a2+a3+…+an+1=3n+1-1,②
②-①得:an+1=3n+1-3n=2×3n
∴an=2×3n-1
当n=1时,a1=31-1=2,符合上式,
∴an=2×3n-1
an2=4×9n-1
a12=4,
an+12
an2
=9,
∴{an2}是以4为首项,9为公比的等比数列,
∴a12+a22+a32+…+an2=
4×(1-9n)
1-9
=
1
2
(9n-1).
故选B.
点评:本题考查数列的求和,考查数列通项公式的确定及等比数列的判断与求和公式的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•威海一模)已知函数f(x)=x2+2bx过(1,2)点,若数列{
1
f(n)
}
的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)已知a∈(π,
2
),cosα=-
5
5
,tan2α=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)已知函数f(x)在R上单调递增,设α=
λ
1+λ
,β=
1
1+λ
(λ≠1)
,若有f(α)-f(β)>f(1)-f(0),则λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)复数z=1-i,则
1
z
+z
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)已知函数f(x)=
1
2
x2-ax+(a+1)lnx.
(Ⅰ)若曲线f(x)在点(2,f(2))处的切线与直线2x+3y+1=0垂直,求a的值;
(Ⅱ)若f(x)在区间(0,+∞)单调递增,求a的取值范围;
(Ⅲ)若-1<a<3,证明:对任意x1,x2∈(0,+∞),x1≠x2,都有
f(x1)-f(x2)
x1-x2
>1成立.

查看答案和解析>>

同步练习册答案