精英家教网 > 高中数学 > 题目详情

【题目】设函数,函数,则方程实数解的个数是( .

A.1B.2C.3D.4

【答案】C

【解析】

根据函数上单调递增和在任意区间上,函数的值为定值得在任意区间上,方程至多有一个实数解,再分别对时,时,时,求得的解,再运用数学归纳法证明时,恒成立,即无解,从而得选项。

由题意知,则时,

由对数函数性质知函数上单调递增,

知:在任意区间上,函数的值为定值。

则在任意区间上,方程至多有一个实数解。

①当时,,令,解得,

故此时有唯一解

②当时,,令,解得,

故此时有唯一解

③当时,,令,解得

故此时有唯一解

④当时,,令,解得,

故此时无解,因为,所以恒成立;

⑤设时,恒成立,

时,

恒成立等同于恒成立,

时,

所以当时,则有仍然恒成立。

由④知时,即时,恒成立,

时,恒成立,即无解。

综上所述,方程的实数根为以及,共3个。

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab > cd,则 +>+ ;(2) + > + 是|a-b| < |c-d|的充要条件
(1)(I)若abcd,则++
(2)(II)++是|a-b||c-d|的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

  1. (2015·四川)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )


A.(1,3)
B.(1, 4)
C.(2,3)
D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,c的极坐标方程为=2sin
(1)写出c的直角坐标方程;
(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量平行.
(1)求A。
(2)若a=, b=2求△ABC的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA,
(1)证明:sinB=cosA
(2)若sinC-sinAcosB=,且B为钝角,求A,B,C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个二元码是由0和1组成的数字其中称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某中二元码的码元满足如下校验方程组:其中运算定义为:现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

x

0

5

-5

0

(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;
(Ⅱ)将图象上所有点向左平行移动个单位长度,得到的图象. 若图象的一个对称中心为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:

年份

2010

2011

2012

2013

2014

时间代号t

1

2

3

4

5

储蓄存款y(千亿元)

5

6

7

8

10


(1)求y关于t的回归方程
(2)用所求回归方程预测该地区2015年()的人民币储蓄存款.
附:回归方程

查看答案和解析>>

同步练习册答案