【题目】已知两点,,点是圆上任意一点,则的面积最小值是( )
A. B. C. D.
【答案】A
【解析】
试题先由A和B的坐标,确定出直线AB的解析式,再把圆的方程化为标准方程,找出圆心坐标和半径,利用点到直线的距离公式求出圆心到直线AB的距离d,用d-r求出圆上到直线AB距离最小的点到直线AB的距离,即为所求的C点,三角形ABC边AB边上的高即为d-r,故利用两点间的距离公式求出线段AB的长度,利用三角形的面积公式即可求出此时三角形的面积,即为所求面积的最小值.
由于两点,则根据两点的距离公式得到|AB|=,而求解的三角形面积的最小值即为高的最小值,那么圆心(1,0)到直线AB:y-x=2的距离,半径为1,故圆上点到直线AB距离的最小值为d-1,那么利用三角形的面积公式得到为,故答案为
科目:高中数学 来源: 题型:
【题目】已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为, 且图象上一个最低点为.
(1) 求函数的最小正周期和对称中心;
(2) 将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得到的图象向左平移个单位长度,得到函数的图象,求函数在区间上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 某汽车租赁公司为了调查A, B两种车型的出租情况,现随机抽取这两种车型各50辆,分别统计了每辆车在某个星期内的出租天数,统计数据如下表:
A型车
出租天数 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 3 | 30 | 5 | 7 | 5 |
B型车
出租天数 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 10 | 10 | 15 | 10 | 5 |
(1)试根据上面的统计数据,判断这两种车型在本星期内出租天数的方差的大小关系(只需写出结果);
(2)现从出租天数为3天的汽车(仅限A, B两种车型)中随机抽取一辆,试估计这辆汽车是A型车的概率;
(3)如果两种车型每辆车每天出租获得的利润相同,该公司需要购买一辆汽车,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调查,并统计得出某款车的使用年限(单位:年)与所支出的总费用(单位:万元)有如下的数据资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
总费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知对呈线性相关关系.
线性回归方程系数公式:,.
(1)试求线性回归方程的回归系数,;
(2)当使用年限为10年时,估计车的使用总费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com