精英家教网 > 高中数学 > 题目详情

    如上图,矩形ABCD中,|AB|=1|BC|=a,PA⊥面ABCD|PA|=1.

    (1)BC边上是否存在点Q,使得PQQD,并说明理由;

    (2)BC边上存在唯一的点Q使得PQQD,指出点Q的位置,并求出此时AD与平面PDQ所成的角的正弦值;

    (3)(2)的条件下,求二面角QPDA的正弦值.

 

答案:
解析:

答案:解:(1)BC边上存在点Q,使PQQD,因PA⊥面ABCDAQQD.矩形ABCD中,当a2时,直线BC与以AD为直径的圆相离,故不存在点Q使AQQD,故仅当a2时才存在点Q使PQQD  

    (2)a=2时,以AD为直径的圆与BC相切于Q,此时Q是唯一的点使∠AQD为直角,且QBC的中点.AHPQH,可证∠ADHAD与平面PDQ所成的角,且在RtPAQ中可求得;

    (3)AGPDG,可证∠AGH为二面角QPDA的平面角,且在RtPAD中可求得.

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

    如上图,矩形ABCD中,|AB|=1|BC|=a,PA⊥面ABCD|PA|=1.

    (1)BC边上是否存在点Q,使得PQQD,并说明理由;

    (2)BC边上存在唯一的点Q使得PQQD,指出点Q的位置,并求出此时AD与平面PDQ所成的角的正弦值;

    (3)(2)的条件下,求二面角QPDA的正弦值.

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省马鞍山市高一下学期期末考试数学试卷 题型:填空题

如上图,四边形ABCD为矩形,,BC=1,以A为圆心,1为半径画圆,

交线段AB于E,在圆弧DE上任取一点P,则直线AP与线段BC有公共点的概率为

____________.                

                                                  

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如上图,四边形ABCD为矩形,,BC=1,以A为圆心,1为半径画圆,交线段AB于E,在圆弧DE上任取一点P,则直线AP与线段BC有公共点的概率为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

如上图,四边形ABCD为矩形,,BC=1,以A为圆心,1为半径画圆,交线段AB于E,在圆弧DE上任取一点P,则直线AP与线段BC有公共点的概率为____________.

查看答案和解析>>

同步练习册答案