精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=lg(x+1)
(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;
(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.

【答案】
(1)解:f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),

要使函数有意义,则

解得:﹣1<x<1.

由0<lg(2﹣2x)﹣lg(x+1)=lg <1得:1< <10,

∵x+1>0,

∴x+1<2﹣2x<10x+10,

,得:


(2)解:当x∈[1,2]时,2﹣x∈[0,1],

∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),

由单调性可知y∈[0,lg2],

又∵x=3﹣10y

∴所求反函数是y=3﹣10x,x∈[0,lg2].


【解析】(1)应用对数函数结合对数的运算法则进行求解即可;(2)结合函数的奇偶性和反函数知识进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】智能手机的出现,改变了我们的生活,同时也占用了我们大量的学习时间.某市教育机构从名手机使用者中随机抽取名,得到每天使用手机时间(单位:分钟)的频率分布直方图(如图所示),其分组是: .

1)根据频率分布直方图,估计这名手机使用者中使用时间的中位数是多少分钟? (精确到整数)

2)估计手机使用者平均每天使用手机多少分钟? (同一组中的数据以这组数据所在区间中点的值作代表)

3)在抽取的名手机使用者中在中按比例分别抽取人和人组成研究小组,然后再从研究小组中选出名组长.求这名组长分别选自的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种农作物可以生长在滩涂和盐碱地,它的灌溉是将海水稀释后进行灌溉.某实验基地为了研究海水浓度对亩产量(吨)的影响,通过在试验田的种植实验,测得了该农作物的亩产量与海水浓度的数据如下表:

海水浓度

亩产量(吨)

残差

绘制散点图发现,可以用线性回归模型拟合亩产量(吨)与海水浓度之间的相关关系,用最小二乘法计算得之间的线性回归方程为.

(1)求的值;

(2)统计学中常用相关指数来刻画回归效果,越大,回归效果越好,如假设,就说明预报变量的差异有是解释变量引起的.请计算相关指数(精确到),并指出亩产量的变化多大程度上是由浇灌海水浓度引起的?

(附:残差,相关指数,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a2an=S2+Sn对一切正整数n都成立.
(1)求a1 , a2的值;
(2)设a1>0,数列{lg }的前n项和为Tn , 当n为何值时,Tn最大?并求出Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设an= sin ,Sn=a1+a2+…+an , 在S1 , S2 , …S100中,正数的个数是(
A.25
B.50
C.75
D.100

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数集X={﹣1,x1 , x2 , …,xn},其中0<x1<x2<…<xn , n≥2,定义向量集Y={ =(s,t),s∈X,t∈X},若对任意 ,存在 ,使得 ,则称X具有性质P.例如{﹣1,1,2}具有性质P.
(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;
(2)若X具有性质P,求证:1∈X,且当xn>1时,x1=1;
(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1 , x2 , …,xn的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着共享单车的蓬勃发展,越来越多的人将共享单车作为短距离出行的交通工具.为了解不同年龄的人们骑乘单车的情况,某共享单车公司对某区域不同年龄的骑乘者进行了调查,得到数据如下:

年龄

15

25

35

45

55

65

骑乘人数

95

80

65

40

35

15

(1)求关于的线性回归方程,并估计年龄为40岁人群的骑乘人数;

(2)为了回馈广大骑乘者,该公司在五一当天通过向每位骑乘者的前两次骑乘分别随机派送一张面额为1元,或2元,或3元的骑行券.已知骑行一次获得1元券,2元券,3元券的概率分别是,且每次获得骑行券的面额相互独立.若一名骑乘者五一当天使用了两次该公司的共享单车,记该骑乘者当天获得的骑行券面额之和为,求的分布列和数学期望.

参考公式: .

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球为正四面体的外接球,,过点作球的截面,则截面面积的取值范围为____________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生产企业研发了一种新产品,该产品在试销一个阶段后得到销售单价(单位:元)和销售量(单位:万件)之间的一组数据,如下表所示:

销售单价/元

销售量/万件

(1)根据表中数据,建立关于的线性回归方程;

(2)从反馈的信息来看,消费者对该产品的心理价(单位:元/件)在内,已知该产品的成本是元,那么在消费者对该产品的心理价的范围内,销售单价定为多少时,企业才能获得最大利润?(注:利润=销售收入-成本)

参考数据:

参考公式:

查看答案和解析>>

同步练习册答案