精英家教网 > 高中数学 > 题目详情
(2012•广州二模)已知数列{an}的前n项和为Sn,对任意n∈N*,都有an>0且Sn=
(an-1)(an+2)
2
,令bn=
lnan+1
lnan

(1)求数列{an}的通项公式;
(2)使乘积b1•b2…bk为整数的k(k∈N*)叫“龙数”,求区间[1,2012]内的所有“龙数”之和;
(3)判断bn与bn+1的大小关系,并说明理由.
分析:(1)Sn=
(an-1)(an+2)
2
=
an2+an-2
2
,当n=1时,a1=S1=
a12+a1-2
2
,即a12-a1-2=0,解得a1=2,或a1=-1,由an>0,知a1=2.当n≥2时,an=Sn-Sn-1=
an2+an-2
2
-
an-12+an-1-2
2
,化简,得(an+an-1)(an-an-1-1)=0,由an>0,知an-an-1=1,由此能求出数列{an}的通项公式.
(2)由bn=
lnan+1
lnan
=
ln(n+2)
ln(n+1)
,知b1•b2…bk=
ln3
ln2
×
ln4
ln3
×…×
ln(k+2)
ln(k+1)
=
ln(k+2)
ln2
=log2(k+2),令log2(k+2)=m,则k=2m-2,m∈Z,由1≤2m-2≤2012,得3≤2m≤2014,故m=2,3,4,5,…,10.由此能求出区间[1,2012]内的所有“龙数”之和.
(3)由bn=
ln(n+2)
ln(n+1)
ln(n+1)
ln(n+1)
=1
,知
bn+1
bn
=
ln(n+3)
ln(n+2)
ln(n+2)
ln(n+1)
=
ln(n+3)•ln(n+1)
[ln(n+2)]2
[
ln(n+3)+ln(n+1)
2
]2
[ln(n+2)]2
<1,故bn>bn+1
解答:解:(1)∵Sn=
(an-1)(an+2)
2
=
an2+an-2
2

当n=1时,a1=S1=
a12+a1-2
2
,即a12-a1-2=0
解得a1=2,或a1=-1,
∵an>0,∴a1=2.
当n≥2时,an=Sn-Sn-1=
an2+an-2
2
-
an-12+an-1-2
2

化简,得an2-an-12-an-an-1=0
∴(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1,
∴{an}是首项为2,公差为1的等差数列,
∴an=2+(n-1)=n+1.
(2)∵bn=
lnan+1
lnan
=
ln(n+2)
ln(n+1)

∴b1•b2…bk=
ln3
ln2
×
ln4
ln3
×…×
ln(k+2)
ln(k+1)
=
ln(k+2)
ln2
=log2(k+2),
令log2(k+2)=m,则k=2m-2,m∈Z,
由1≤2m-2≤2012,得3≤2m≤2014,
∴m=2,3,4,5,…,10.
∴在区间[1,2012]内,k的值为22-2,23-2,…,210-2,
其和为:(22-2)+(23-2)+…+(210-2)
=(22+23+…+210)-2×9
=
22(1-29)
1-2
-18=2026.
(3)∵bn=
ln(n+2)
ln(n+1)
ln(n+1)
ln(n+1)
=1

bn+1
bn
=
ln(n+3)
ln(n+2)
ln(n+2)
ln(n+1)

=
ln(n+3)•ln(n+1)
[ln(n+2)]2

[
ln(n+3)+ln(n+1)
2
]2
[ln(n+2)]2

=
[ln(n+3)(n+1)]2
4[ln(n+2)]2

[ln(
n+3+n+1
2
)2]2
4[ln(n+2)]2
=1,
∴bn>bn+1
点评:本题考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广州二模)甲、乙、丙三种食物的维生素含量及成本如下表所示
食物类型
维生索C(单位/kg) 300 500 300
维生素D(单位/kg) 700 100 300
成本(元/k) 5 4 3
某工厂欲将这三种食物混合成100kg的混合食物,设所用食物甲、乙、丙的重量分别为x kg、y kg、z kg.
(1)试以x、y表示混合食物的成本P;
(2)若混合食物至少需含35000单位维生素C及40000单位维生素D,问x、y、z取什么值时,混合食物的成本最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州二模)已知函数f(x)=(cosx+sinx)(cosx-sinx).
(1)求函数f(x)的最小正周期;
(2)若0<α<
π
2
0<β<
π
2
,且f(
α
2
)=
1
3
f(
β
2
)=
2
3
,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州二模)在平行四边形ABCD中,点E是AD的中点,BE与AC相交于点F,若
EF
=m
AB
+n
AD
(m,n∈R)
,则
m
n
的值为
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州二模)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(m,m+1),若
AB
OC
,则实数m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州二模)已知函数f(x)=ex-e-x+1(e是自然对数的底数),若f(a)=2,则f(-a)的值为(  )

查看答案和解析>>

同步练习册答案