精英家教网 > 高中数学 > 题目详情
已知平行四边形ABCD的三个顶点A(-2,1),B(-1,3),C(3,4),则第四个顶点D的坐标为(  )
分析:根据A与B坐标求出直线AB的斜率,根据B与C坐标求出直线BC斜率,利用平行四边形的对边平行得到直线AD与CD的斜率,表示出直线AD与CD的方程,联立即可求出D的坐标.
解答:解:∵AB∥CD,AD∥BC,
∴kAD=kBC=
4-3
3-(-1)
=
1
4
,kAB=kCD=
3-1
-1-(-2)
=2,
∴直线AD解析式为y-1=
1
4
(x+2),即x-4y+6=0;直线CD解析式为y-4=2(x-3),即2x-y-2=0,
联立得:
x-4y+6=0
2x-y-2=0

解得:
x=2
y=2

则点D坐标为(2,2).
故选C
点评:此题考查了两直线的交点坐标,以及两直线平行与倾斜角、斜率的关系,弄清题意是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为△ABC的外心,以线段OA、OB为邻边作平行四边形,第四个顶点为D,再以OC、OD为邻边作平行四边形,它的第四个顶点为H.
(1)若
OA
=
a
OB
=
b
OC
=
c
OH
=
h
,试用
a
b
c
表示
h

(2)证明:
AH
BC

(3)若△ABC的∠A=60°,∠B=45°,外接圆的半径为R,用R表示|
h
|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以Rt△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,E为BC边上的中点,连结DE.

(1)如图,求证:DE是⊙O的切线;

(2)连结OE、AE,当∠CAB为何值时,四边形AOED是平行四边形,并在此条件下求sin∠CAE的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知O为△ABC的外心,以线段OA、OB为邻边作平行四边形,第四个顶点为D,再以OC、OD为邻边作平行四边形,它的第四个顶点为H.
(1)若
OA
=
a
OB
=
b
OC
=
c
OH
=
h
,试用
a
b
c
表示
h

(2)证明:
AH
BC

(3)若△ABC的∠A=60°,∠B=45°,外接圆的半径为R,用R表示|
h
|

查看答案和解析>>

科目:高中数学 来源:2009-2010学年辽宁省沈阳二中高一(下)期中数学试卷(必修4)(解析版) 题型:解答题

已知O为△ABC的外心,以线段OA、OB为邻边作平行四边形,第四个顶点为D,再以OC、OD为邻边作平行四边形,它的第四个顶点为H.
(1)若,试用表示
(2)证明:
(3)若△ABC的∠A=60°,∠B=45°,外接圆的半径为R,用R表示

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省肇庆市南丰中学高三(上)数学复习试卷C (必修4)(解析版) 题型:解答题

已知O为△ABC的外心,以线段OA、OB为邻边作平行四边形,第四个顶点为D,再以OC、OD为邻边作平行四边形,它的第四个顶点为H.
(1)若,试用表示
(2)证明:
(3)若△ABC的∠A=60°,∠B=45°,外接圆的半径为R,用R表示

查看答案和解析>>

同步练习册答案