【题目】2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24 届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:
(1)根据上表说明,能否有的把握认为,收看开幕式与性别有关?
(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动.若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3 人中女生人数为,写出的分布列,并求.
附:,其中.
科目:高中数学 来源: 题型:
【题目】设样本数据x1 , x2 , …,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1 , y2 , …,y10的均值和方差分别为( )
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)表示所取3张卡片上的数字的中位数,求的分布列与数学期望.
(注:若三个数满足,则称为这三个数的中位数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,部分对应值如下表,的导函数的图象如图所示,给出关于的下列命题:
①函数在处取得极小值;
②函数在是减函数,在是增函数;
③当时,函数有4个零点;
④如果当时,的最大值是2,那么的最小值为0.
其中所有的正确命题是__________(写出正确命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
f(x)=(cosx﹣x)(π+2x)﹣ (sinx+1)
g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣ )
证明:
(1)存在唯一x0∈(0, ),使f(x0)=0;
(2)存在唯一x1∈( ,π),使g(x1)=0,且对(Ⅰ)中的x0 , 有x0+x1<π.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机将1,2,…,2n(n∈N* , n≥2)这2n个连续正整数分成A、B两组,每组n个数,A组最小数为a1 , 最大数为a2;B组最小数为b1 , 最大数为b2;记ξ=a2﹣a1 , η=b2﹣b1 .
(1)当n=3时,求ξ的分布列和数学期望;
(2)C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);
(3)对(2)中的事件C, 表示C的对立事件,判断P(C)和P( )的大小关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,|an+1﹣an|=pn , n∈N* .
(1)若{an}是递增数列,且a1 , 2a2 , 3a3成等差数列,求p的值;
(2)若p= ,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com