精英家教网 > 高中数学 > 题目详情
12.函数f(x)=$\frac{2x+3}{x-1}$的减区间为(-∞,1),(1,+∞).

分析 根据分式函数的性质,利用分子常数化进行求解即可.

解答 解:f(x)=$\frac{2x+3}{x-1}$=$\frac{2(x-1)+5}{x-1}$=2+$\frac{5}{x-1}$,
则函数的单调递减区间为(-∞,1),(1,+∞),
故答案为:(-∞,1),(1,+∞)

点评 本题主要考查函数单调区间的求解,根据分式函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.满足不等式组$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$,的解集为P,则(  )
A.?(x,y)∈P,y≤1-x2B.?(x,y)∈P,y≤($\frac{1}{2}$)x
C.?(x,y)∈P,y>2xD.?(x,y)∈P,y≤log2(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=-x2-2ax(0≤x≤1),且ymax=a2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=x2+(a-2)x-1在区间(-∞,2]是减函数,则实数a的最大值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求导f(x)=aex+$\frac{1}{a{e}^{x}}$+b(a>0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆A:(x+2)2+y2=1与点A(-2,0),B(2,0),分别求出满足下列条件的动点P的轨迹方程.
(1)△PAB的周长为10;
(2)圆P与圆A外切(P为动圆圆心)且过点B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx+ln(2-x)+x.
(1)计算f(x)在(1,1)处的切线方程;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{{x}^{2}}{4}$,则由函数f(x)的图象与x轴,直线x-y-1=0所围成的封闭图形的面积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列各式的值:
(1)$\root{4}{10{0}^{4}}$;
(2)$\root{5}{(-0.1)^{5}}$;
(3)$\sqrt{(π-4)^{2}}$;
(4)$\root{6}{(x-y)^{6}}$(x>y)

查看答案和解析>>

同步练习册答案