精英家教网 > 高中数学 > 题目详情

如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C、BB1A1A为全等的矩形,并且AB=1,BB1=2,AB⊥侧面BB1C1C,D为棱C1C上异于C、C1的一点,且DB⊥DA1
(1)求证:B1D⊥平面ABD;
(2)求二面角A-DB1-A1的余弦值.

(1)证明:依题意,可知BA,BC,BB1两两垂直,
以B为坐标原点,BC为x轴,BB1为y轴,BA为z轴建立空间坐标系,
则B(0,0,0),A(0,0,1),C(1,0,0),
B1(0,2,0),A1(0,2,1),C1(1,2,0)
设D(1,y,0),则
∵DB⊥DA1
从而

∴B1D⊥BD,B1D⊥BA,
∴B1D⊥平面ABD;
(2)解:由题意A1B1⊥B1D,


∴B1D⊥AD,
设二面角A-DB1-A1的大小为θ

即二面角A-DB1-A1的大小的余弦值为
分析:(1)依题意,可知BA,BC,BB1两两垂直,以B为坐标原点,BC为x轴,BB1为y轴,BA为z轴建立空间坐标系,则,由向量法能够证明B1D⊥平面ABD.
(2)由题意A1B1⊥B1D,又,故,B1D⊥AD,设二面角A-DB1-A1的大小为θ,由向量法能够求出二面角A-DB1-A1的大小的余弦值.
点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,合理地进行等价转化,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A'B'C'中,若E、F分别为AB、AC的中点,平面EB'C'F将三棱柱分成体积为V1、V2的两部分,那么V1:V2为(  )
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,则此三棱柱的侧视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1为菱形,∠A1AB=60°,四边形BCC1B1为矩形,若AB⊥BC且AB=4,BC=3
(1)求证:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若N是AB上一点,且
AN
AB
=
CM
CC1
,求证:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分别在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案