精英家教网 > 高中数学 > 题目详情

【题目】a为实数,函数

1)若,求不等式的解集;

2)是否存在实数a,使得函数在区间上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;

3)写出函数R上的零点个数(不必写出过程).

【答案】12)不存在这样的实数,理由见解析(3)见解析

【解析】

1)代入的值,通过讨论的范围,求出不等式的解集即可;

2)通过讨论的范围,求出函数的单调区间,再求出函数的最值,得到关于的不等式组,解出并判断即可;

3)通过讨论的范围,判断函数的零点个数即可

1)当,,

则当,,解得,

,,解集为,

综上,的解集为

2,显然,,

①当,上单调递增,上单调递减,上单调递增,

因为函数上既有最大值又有最小值,

所以,,

,,解得,

故不存在这样的实数

②当,上单调递增,上单调递减,上单调递增,

因为函数上既有最大值又有最小值,

,,

,,解得,

故不存在这样的实数

③当,上的递增函数,

故函数上不存在最大值和最小值,

综上,不存在这样的实数

3)当,函数的零点个数为1

,函数的零点个数为2

,函数的零点个数为3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)求与直线3x4y70垂直,且与原点的距离为6的直线方程;

(2)求经过直线l12x3y50l27x15y10的交点,且平行于直线x2y30的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点及圆.

1)若直线过点且被圆截得的线段长为的方程;

(2)求过点的圆的弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,,外接球的球心为О,点E是侧棱上的一个动点.有下列判断:

①直线AC与直线是异面直线;

一定不垂直

③三棱锥的体积为定值;

的最小值为

⑤平面与平面所成角为

其中正确的序号为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,已知,平面平面的中点,连接.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某省各景区在大众中的熟知度,随机从本省岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家级旅游景区?”,统计结果如下表所示:

组号

分组

回答正确的人数

回答正确的人数占本组的频率

1)分别求出的值;

2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;

3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄段在的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)是函数的极值点,求实数的值;

(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:

其中:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)

(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?

【答案】(1)答案见解析;(2) (3)中度高血压人群.

【解析】试题分析:(1将数据对应描点,即得散点图,2先求均值,再代人公式求,利用,(3根据回归直线方程求自变量为180时对应函数值,再求与标准值的倍数,确定所属人群.

试题解析:(1)

(2)

∴回归直线方程为.

3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为mmHg

∴收缩压为180mmHg的70岁老人为中度高血压人群.

型】解答
束】
19

【题目】如图,四棱柱的底面为菱形, 中点.

(1)求证: 平面

(2)若底面,且直线与平面所成线面角的正弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,下列结论中正确的是( )

A. B.

C. 是数列中的最大值 D. 数列无最小值

查看答案和解析>>

同步练习册答案