精英家教网 > 高中数学 > 题目详情
从4名男生和3名女生中选出3人组成一个学习小组,其中至少有1名女生的不同选法共有
 
种(用数字作答)
考点:计数原理的应用
专题:排列组合
分析:由题意知这3人中至少有1名女生的对立事件是只选男生,即则这3人中至少有1名女生等于从全部方案中减去只选男生的方案数,由排列的方法计算全部方案与只选男生的方案数.
解答: 解:从4名男生和3名女生中选出3人,组成一个学习小组,有C73种选法,
其中只选派男生的方案数为C43
这3人中至少有1名女生与只选男生为对立事件,
则这3人中至少有1名女生等于从全部方案中减去只选男生的方案数,
即合理的选则方案共有C73-C43=31种结果,
故答案为:31
点评:本题考查排列组合的运用,本题解题的关键是看出要求的事件的对立事件,遇到求出现至多或至少这种语言时,一般要用间接法来解,正难则反
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,PQ为半圆O的直径,A为以OQ为直径的半圆A的圆心,圆O的弦PN切圆A于点M,PN=8,则圆A的半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=sin(2x+
12
)的图象向右平移
π
6
个单位,再将图象上横坐标伸长为原来的2倍后得到y=g(x)图象,若在x∈[0,2π)上关于x的方程g(x)=m有两个不等的实根x1,x2,则x1+x2的值为(  )
A、π或
2
B、
π
2
2
C、π或3π
D、
π
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是△ABC边BC上任意一点,且2
AN
=
NM
,若
AN
AB
AC
,则λ+μ的值为(  )
A、
1
4
B、
1
3
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

某地对100户农户的生活情况作了调查,交来的统计表上称:有彩电的65户,有电冰箱的84户,二者都有的53户,则彩电与冰箱至少有一种的有
 
户.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,满足f(x)+f(-x)=0,f(x-1)=f(x+1),当x∈[0,1)时,f(x)=3x-1,则f(log 
1
3
12)的值为(  )
A、-
11
12
B、-
1
4
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥表面积为πa,其侧面展开图是一个半圆,则圆锥底面半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)=f(2-x),当x∈[-1,0]时,f(x)=1-(
1
2
)x
,则f(2014)+f(2015)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos
2x
5
+sin
2x
5
的图象中相邻的两个对称中心之间的距离是
 

查看答案和解析>>

同步练习册答案