精英家教网 > 高中数学 > 题目详情
(2013•青岛一模)已知f(x)=|x+2|+|x-4|的最小值为n,则二项式(x-
1
x
)n
展开式中x2项的系数为(  )
分析:在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.
解答:解:∵已知f(x)=|x+2|+|x-4|的最小值为n,而由绝对值的意义可得|x+2|+|x-4|表示数轴上的x对应点到-2和4对应点的距离之和,
它的最小值为6,故n=6.
则二项式(x-
1
x
)n
=(x-
1
x
)
6
 的展开式的通项公式为 Tr+1=
C
r
6
•x6-r•(-1)r•x-r=(-1)r
C
r
6
•x6-2r
令 6-2r=2,求得 r=2,故展开式中x2项的系数为
C
2
6
=15,
故选A.
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)下列函数中周期为π且为偶函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)“k=
2
”是“直线x-y+k=0与圆“x2+y2=1相切”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)函数y=21-x的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知x,y满足约束条件
x2+y2≤4
x-y+2≥0
y≥0
,则目标函数z=-2x+y的最大值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足:△ABC的周长为2+2
2
,记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)曲线W上是否存在这样的点P:它到直线x=-1的距离恰好等于它到点B的距离?若存在,求出点P的坐标;若不存在,请说明理由;
(Ⅲ)设E曲线W上的一动点,M(0,m),(m>0),求E和M两点之间的最大距离.

查看答案和解析>>

同步练习册答案