精英家教网 > 高中数学 > 题目详情

【题目】如图,在底面半径和高均为4的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,若过直径CD与点E的平面与圆锥侧面的交线是以E为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P的距离为

【答案】
【解析】解:如图所示,过点E作EH⊥AB,垂足为H.
∵E是母线PB的中点,圆锥的底面半径和高均为4,
∴OH=EH=2.
∴OE=2
在平面CED内建立直角坐标系如图.
设抛物线的方程为y2=2px
(p>0),F为抛物线的焦点.
C(2 ,4),
∴16=2p(2 ),
解得p=2
F( ,0).
即OF= ,EF=
∵PB=4 ,PE=2
∴该抛物线的焦点到圆锥顶点P的距离为 = =
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆心在 轴上的圆 过点 ,圆 的方程为
(1)求圆 的方程;
(2)由圆 上的动点 向圆 作两条切线分别交 轴于 两点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为等腰梯形, ,将沿折起,使得平面平面的中点,连接 (如图2).

(1)求证: ;

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求证:

(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面的菱形, 为棱上的动点,且.

(1)求证:

(2)试确定的值,使得二面角的平面角余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程选讲

以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,

在直角坐标系中,曲线的参数方程为是参数, ),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)当时,曲线相交于两点,求以线段为直径的圆的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中, ,侧面底面 的中点, .

(Ⅰ)求证:

(Ⅱ)求直线与平面所成线面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线l:y=kx+ 与椭圆C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案