精英家教网 > 高中数学 > 题目详情

【题目】如图,在平行六面体ABCDA1B1C1D1中,AA1A1DABBC,∠ABC120°.

1)证明:ADBA1

2)若平面ADD1A1⊥平面ABCD,且A1DAB,求直线BA1与平面A1B1CD所成角的正弦值.

【答案】1)见解析(2

【解析】

1)取AD中点O,连接OBOA1BD,推导出ADOA1,△ABD是等边三角形,从而ADOB,进而AD⊥平面A1OB,由此能证明ADBA1.
2)推导出OAOA1OB两两垂直,以O为坐标原点,分别以OAOBOA1所在射线为xyz轴建立空间直角坐标系Oxyz,利用向量法能求出直线BA1与平面A1B1CD所成角的正弦值.

证明:(1)取AD中点O,连接OBOA1BD

AA1A1D,∴ADOA1

又∠ABC120°ADAB,∴△ABD是等边三角形,

ADOB,∴AD⊥平面A1OB

A1B平面A1OB,∴ADA1B.

2)∵平面ADD1A1⊥平面ABCD

平面ADD1A1平面ABCDAD

A1OAD,∴A1O⊥平面ABCD,∴OAOA1OB两两垂直,

O为坐标原点,分别以OAOBOA1所在射线为xyz轴建立如图空间直角坐标系Oxyz

ABADA1D2,则A100),D(﹣100),.

设平面A1B1CD的法向量

,令,则y1z=﹣1,可取

设直线BA1与平面A1B1CD所成角为θ

.

∴直线BA1与平面A1B1CD所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x亿件:精确到0.1)及其增长速度(y%)的数据

1)试计算2012年的快递业务量;

2)分别将2013年,2014年,…,2017年记成年的序号t12345;现已知yt具有线性相关关系,试建立y关于t的回归直线方程

3)根据(2)问中所建立的回归直线方程,估算2019年的快递业务量

附:回归直线的斜率和截距地最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:=1(a>b>0)点A、B分别是椭圆C的左顶点和上顶点直线AB与圆G:x2+y2(c是椭圆的半焦距)相离,P是直线AB上一动点过点P作圆G的两切线切点分别为M、N.

(1)若椭圆C经过两点求椭圆C的方程;

(2)当c为定值时求证:直线MN经过一定点E并求·的值(O是坐标原点);

(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为

(l)设为参数,若,求直线的参数方程;

2)已知直线与曲线交于,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,且,过棱的中点,作于点.

1)证明:平面

2)若面与面所成二面角的大小为,求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由中央电视台综合频道和唯众传媒联合制作的开讲啦是中国首档青年电视公开课,每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了AB两个地区的100名观众,得到如表的列联表,已知在被调查的100名观众中随机抽取1名,该观众是B地区当中非常满意的观众的概率为

非常满意

满意

合计

A

30

15

B

合计

完成上述表格并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系;

若以抽样调查的频率为概率,从A地区随机抽取3人,设抽到的观众非常满意的人数为X,求X的分布列和期望.

附:参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆E :的焦距为4,两条准线间的距离为8AB分别为椭圆E的左、右顶点.

(1)求椭圆E 的标准方程;

(2)已知图中四边形ABCD 是矩形,且BC4,点MN分别在边BCCD上,AMBN相交于第一象限内的点P .①若MN分别是BCCD的中点,证明:P在椭圆E上;②若点P在椭圆E上,证明:为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB4AD2ECD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1ABCE,其中平面D1AE⊥平面ABCE.

(1)证明:BE⊥平面D1AE

(2)FCD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆两顶点,短轴长为4,焦距为2,过点的直线与椭圆交于两点.设直线与直线交于点.

1)求椭圆的方程;

2)求线段中点的轨迹方程;

3)求证:点的横坐标为定值.

查看答案和解析>>

同步练习册答案