精英家教网 > 高中数学 > 题目详情
5、如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有(  )
分析:根据题意,分两步进行;先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,由分步计数原理,计算可得答案.
解答:解:先涂三棱锥P-ABC的三个侧面,有C13×C12种情况;
然后涂三棱柱的三个侧面,有C11×C12种情况;
共有C13×C12×C11×C12=3×2×1×2=12种不同的涂法.
故选D
点评:本题考查分步计数的原理的运用,注意分析题意,认清是分类问题还是分步问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,BD=1,AF=2,CE=3,O为AB的中点.
(Ⅰ)求平面DEF与平面ABC相交所成锐角二面角的余弦值;
(Ⅱ)在DE上是否存在一点P,使CP⊥平面DEF?如果存在,求出DP的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体是由以正三角形ABC为底面的直棱柱被平面 DEF所截而得.AB=2,BD=1,CE=3,AF=a,O为AB的中点.
(1)当a=4时,求平面DEF与平面ABC的夹角的余弦值;
(2)当a为何值时,在棱DE上存在点P,使CP⊥平面DEF?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥
平面ABC,AB=2,AF=2,CE=3,BD=1,O为BC的中点.
(1)求证:AO∥平面DEF;
(2)求证:平面DEF⊥平面BCED;
(3)求平面DEF与平面ABC相交所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,BD=1,AF=2,CE=3,O为AB的中点.
(1)求证:OC⊥DF;
(2)试问线段CE上是否存在一点P,使得OP∥平面DEF?若存在,求出CP的长度,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案