精英家教网 > 高中数学 > 题目详情
7.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P,若|AP|=2|PB|,则椭圆的离心率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 先求出点B的坐标,设出点P的坐标,利用$\overrightarrow{AP}$=2$\overrightarrow{PB}$,由向量共线的坐标表示,得到a与c的关系,从而求出离心率.

解答 解:如图,由于BF⊥x轴,
故xB=-c,yB =$\frac{{b}^{2}}{a}$,即B(-c,$\frac{{b}^{2}}{a}$),
设P(0,t),
∵$\overrightarrow{AP}$=2$\overrightarrow{PB}$,
∴(-a,t)=2(-c,$\frac{{b}^{2}}{a}$-t).
∴a=2c,
∴e=$\frac{c}{a}$=$\frac{1}{2}$,
故选B.

点评 本题考查椭圆的简单性质以及向量坐标形式的运算法则的应用,体现了数形结合的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知向量 $\overrightarrow{m}$=(sinx,1),$\overrightarrow{n}$=($\sqrt{3}$Acosx,$\frac{A}{2}$cos2x)(A>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最大值为6.
(Ⅰ)求A;
(Ⅱ)将函数y=f(x)的图象像左平移$\frac{π}{12}$个单位,再将所得图象各点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0,$\frac{5π}{24}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.曲线y=2x3,求该曲线在x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线y=$\sqrt{3}$x+4与x轴和y轴的交点分别为A,B,以AB为边做等边三角形ABC,则顶点C的坐标为(-$\frac{8\sqrt{3}}{3}$,4)或($\frac{4\sqrt{3}}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{ax-1}{x+1}$.
(1)若a=-2,试证f(x)在(-∞,-2)上单调递减;
(2)函数f(x)在(-∞,-1)上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义在R上的函数f(x)对任意的实数a、b、c,都有:f(a+b)+f(b+c)+f(a+c)≥3f(a+2b+c),则f(2014)-f(2013)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.P为椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上的右顶点,A,B为椭圆上关于原点对称两点且PA,PB斜率存在,直线PA,PB分别与直线x=3交于M,N两点.
(1)求MN的最小值;
(2)证明以MN为直径的圆过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{{a}^{2x}-(t-1)}{{a}^{x}}$(a>0且a≠1)是定义域为R的奇函数.
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx-x2)+f(x-1)<0对一切x∈R恒成立的实数k的取值范围;
(3)若函数f(x)的图象过点(1,$\frac{3}{2}$),是否存在正数m,且m≠1使函数g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值为0,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.实轴是虚轴的3倍,且经过点P(3,0)的双曲线的标准方程是$\frac{x^2}{9}-{y^2}=1$.

查看答案和解析>>

同步练习册答案