精英家教网 > 高中数学 > 题目详情

【题目】某植物学家培养出一种观赏性植物,会开出红花或黄花,已知该植物第一代开红花和黄花的概率都是,从第二代开始,若上一代开红花,则这一代开红花的概率是,开黄花的概率是;若上一代开黄花,则这一代开红花的概率是,开黄花的概率是.记第n代开红花的概率为,第n代开黄花的概率为.

1)求

2)①证明:数列为等比数列;

②第代开哪种颜色花的概率更大?

【答案】1.(2)①证明见解析;②开黄花的概率更大

【解析】

(1)由题可知可能的情况有第一代开红花后第二代也开红花;第一代开黄花而第二代开红花,故分别计算再求和即可;

2)①根据题意可求出的递推公式,再构造数列证明即可;

②根据①中的递推公式可得即可知开黄花的概率更大.

1)第二代开红花包含两个互斥事件:

即第一代开红花后第二代也开红花;第一代开黄花而第二代开红花,

故由,得

2)①由题意可知,第代开红花的概率与第代的开花的情况相关,

故有,则有

.

所以数列是以为首项,以为公比的等比数列.

②由①知,故

故有当时,.

因此,第代开黄花的概率更大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为菱形,.平面平面分别是的中点.

1)求证://平面

2)若直线与平面所成的角为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省即将实行新高考,不再实行文理分科.某校为了研究数学成绩优秀是否对选择物理有影响,对该校2018级的1000名学生进行调查,收集到相关数据如下:

1)根据以上提供的信息,完成列联表,并完善等高条形图;

选物理

不选物理

总计

数学成绩优秀

数学成绩不优秀

260

总计

600

1000

2)能否在犯错误的概率不超过0.05的前提下认为数学成绩优秀与选物理有关?

附:

临界值表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】组成没有重复数字的五位数abcde,其中随机取一个五位数,满足条件的概率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为助力湖北新冠疫情后的经济复苏,某电商平台为某工厂的产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:

单价(元/件)

8

8.2

8.4

8.6

8.8

9

销量(万件)

90

84

83

80

75

68

1)根据以上数据,求关于的线性回归方程;

2)若该产品成本是4/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润?

(参考公式:回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面为平行四边形,,且是棱的中点.

1)求证:平面

2)求直线与平面所成角的正弦值;

3)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,DEF分别为线段的中点.

1)证明:平面

2)证明:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了治理空气污染,某市设个监测站用于监测空气质量指数,其中在轻度污染区、中度污染区、重度污染区分别设有个监测站,并以个监测站测得的的平均值为依据播报该市的空气质量.

1)若某日播报的,已知轻度污染区平均值为,中度污染区平均值为,求重试污染区平均值;

2)如图是月份天的的频率分布直方图,月份仅有.

①某校参照官方公布的,如果周日小于就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;

②环卫部门从月份不小于的数据中抽取两天的数据进行研究,求抽取的这两天中值都在的概率.

查看答案和解析>>

同步练习册答案