精英家教网 > 高中数学 > 题目详情
5.若关于x的方程x2-x-(m+1)=0在[-1,1]上有解,则m的取值范围是[-$\frac{5}{4}$,1].(结果写成区间形式)

分析 分离参数m=x2-x-1,x∈[-1,1].对“=”右端配方可得m的取值范围.

解答 解:由原方程得m=x2-x-1=(x-$\frac{1}{2}$)2-$\frac{5}{4}$≥-$\frac{5}{4}$;
∴x=-1时,m取最大值1;
∴m的取值范围为:[-$\frac{5}{4}$,1].
故答案为:[-$\frac{5}{4}$,1].

点评 考查一元二次方程解的情况和对应的二次函数与x轴交点的情况的关系,判别式的取值和二次函数与x轴交点情况的关系,要熟悉并利用二次函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax3+c,且f′(1)=6,函数在[1,2]上的最大值为20,则c的值为(  )
A.1B.4C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线y=k(x+3)与圆x2+y2-2x=3相切,则k=±$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角A、B、C所对的边分别为a、b、c,且b(2sinB-sinA)+(2a-b)sinA=2csinC,则C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知cos(x-$\frac{π}{4}$)=-$\frac{1}{3}$($\frac{5π}{4}$<x<$\frac{7π}{4}$),则sinx-cos2x=(  )
A.$\frac{5\sqrt{2}-12}{18}$B.$\frac{-4\sqrt{2}-7}{9}$C.$\frac{4-7\sqrt{2}}{9}$D.$\frac{-4-7\sqrt{2}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD,侧面PAD是边长为4的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.
(1)在棱PB上是否存在一点Q,使得QM∥面PAD?若存在,指出点Q的位置并证明;若不存在,请说明理由;
(2)求点D到平面PAM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在长方体ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,
(1)求异面直线A1B与B1C所成角的余弦值..
(2)若点E、F分别是AB、A1B的中点,求证:EF∥平面BDD1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知双曲线M的中心在原点,以坐标轴为对称轴,焦点在x轴上,离心率为$\sqrt{2}$,焦点到一条渐近线的距离为1,
①求M的标准方程
②直线y=kx+1交M的左支于A、B两点,E为AB的中点,F为其左焦点,求直线EF在y轴上的截距m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+1|.
(1)求不等式x•f(x)>f(x-2)的解集;
(2)若函数y=lg[f(x-3)+f(x)+a]的值域为R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案