精英家教网 > 高中数学 > 题目详情

【题目】在矩阵A的变换下,坐标平面上的点的横坐标伸长到原来的3倍,纵坐标不变.
(1)求矩阵A及A1
(2)求圆x2+y2=4在矩阵A1的变换下得到的曲线方程.

【答案】
(1)解:∵在矩阵A的变换下,坐标平面上的点的横坐标伸长到原来的3倍,纵坐标不变,

∴A=

∵△=|A|=3,∴A1=


(2)解:由 = ,得

代入x2+y2=4,得9x'2+y'2=4,

∴圆x2+y2=4在矩阵A1的变换下得到的曲线方程为9x2+y2=4.


【解析】(1)由题意求出A= ,再求出△=|A|=3,由此能求出A1 . (2)由 = ,得 ,由此能求出圆x2+y2=4在矩阵A1的变换下得到的曲线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB) (Ⅰ)求角C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别是a,b,c,且 acosC=(2b﹣ c)cosA.
(1)求角A的大小;
(2)求cos( ﹣B)﹣2sin2 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sinxcosx﹣sin2(x﹣ ). (Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x﹣ )在[0, ]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x)+f(x﹣1)=0,且在[﹣5,﹣4]上是增函数,A,B是锐角三角形的两个内角,则(
A.f(sinA)>f(cosB)
B.f(sinA)<f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求f(x)单调递增区间;
(2)△ABC中,角A,B,C的对边a,b,c满足 ,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”.其大意为:“有一个走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为(
A.48里
B.24里
C.12里
D.6里

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且S6=5S2+18,a3n=3an , 数列{bn}满足b1b2…bn=4Sn . (Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=log2bn , 且数列 的前n项和为Tn , 求T2016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图输出的结果是S=720,则判断框内应填的条件是(
A.i≤7
B.i>7
C.i≤9
D.i>9

查看答案和解析>>

同步练习册答案