精英家教网 > 高中数学 > 题目详情
(2013•嘉定区二模)过点P(1,1)作直线与双曲线x2-
y2
2
=1
交于A、B两点,使点P为AB中点,则这样的直线(  )
分析:利用平方差法:设A(x1,y1),B(x2,y2),代入双曲线方程然后作差,由中点坐标公式及斜率公式可求得直线l的斜率,再用点斜式即可求得直线方程,然后再检验直线与曲线方程联立的方程的解的存在的情况
解答:解:设A(x1,y1),B(x2,y2),则x1+x2=2,y1+y2=2,
则x12-
1
2
y12
=1,x22-
1
2
y22
=1,
两式相减得(x1-x2)(x1+x2)-
1
2
(y1-y2)(y1+y2)=0,
x1-x2=
1
2
(y1-y2)

即kAB=2,
故所求直线方程为y-1=2(x-1),即2x-y-1=0.
联立
y=2x-1
x2-
1
2
y2=1
可得2x2-4x+3=0,但此方程没有实数解
故这样的直线不存在
故选D
点评:本题考查直线与圆锥曲线的位置关系,考查直线方程的求法,涉及弦中点问题,往往考虑利用“平方差法”加以解决.但是一定要检验所求直线与椭圆的方程的解的存在情况
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•嘉定区二模)函数f(x)=ax-(k-1)a-x(a>0且≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)<0,试判断函数单调性并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区二模)设定义域为R的函数f(x)=
1
|x-1|
,x≠1
1,x=1
,若关于x的方程f2(x)+bf(x)+c=0有3个不同的整数解x1,x2,x3,则x12+x22+x32等于
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区二模)已知a>0且a≠1,函数f(x)=loga(x+
x2+b
)
在区间(-∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga|x|-b|的图象是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区二模)若关于x的不等式2x2-3x+a<0的解集为(m,1),且实数f(1)<0,则m=
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区二模)(文)已知集合A={-1,0,a},B={x|1<3x<9,x∈Z},若A∩B≠∅,则实数a的值是
1
1

查看答案和解析>>

同步练习册答案