分析 (1)由已知条件得CF=BE,CD=BD,由△ABC是等腰三角形,得AD是∠CAB的平分线,由此能证明圆心O在直线AD上.
(2)连接DF,由已知条件得∠FDH+∠FHD=90°,∠G=∠FDH,由此能求出GC的长.
解答 (1)证明:∵AB=AC,AF=AE
∴CF=BE…(2分)
又CF=CD,BD=BE,∴CD=BD…(4分)
又△ABC是等腰三角形
∴AD是∠CAB的平分线
∴圆心O在直线AD上…(6分)
(2)解:连接DF,由(I)知,DH是⊙O的直径
∴∠DFH=90°,∴∠FDH+∠FHD=90°…(7分)
又∠G+∠FHD=90°,∴∠G=∠FDH…(8分)
∵⊙O与AC相切于点F,∴∠AFH=∠GFC=∠FDH
∴∠GFC=∠G…(10分)
∴CG=CF=CD=DB
由BC=6,得GC=2.…(12分)
点评 本题考查圆心在直线上的证明,考查线线段长的求法,正确运用圆的简单性质是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{3π}{4}$] | B. | [$\frac{π}{6}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{6}$] | C. | [$\frac{π}{6}$,$\frac{π}{4}$]∪[$\frac{4π}{3}$,$\frac{5π}{6}$] | D. | [$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{5}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com