精英家教网 > 高中数学 > 题目详情

【题目】AB是抛物线上分别位于x轴两侧的两个动点,且,(其中O为坐标原点).

1)求证:直线必与x轴交于一定点Q,并求出此定点Q的坐标;

2)过点Q作直线的垂线与抛物线交于CD两点,求四边形面积的最小值.

【答案】1)证明见解析,;(288.

【解析】

1)设直线的方程为,联立得,,由韦达定理得,,根据,得,由此解方程即可得到本题答案;

2)由弦长公式,得,所以四边形的面积,通过换元法,利用函数的单调性即可求得本题答案.

1)证明:易知直线的斜率不为0,设直线的方程为

得,

,且

,得

解得,(舍去),

所以,可得,即直线的方程为

所以直线恒过定点

2)由(1)得,

同理,

因为,所以四边形的面积

,当且仅当时等号成立),

,易知函数上是增函数,所以当时,取得最小值88,故四边形面积的最小值为88.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abc,cosB

(Ⅰ)若c=2a,求的值

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究日平均走步数和性别是否有关,统计了20191月份所有用户的日平均步数,规定日平均步数不少于8000的为运动达人,步数在8000以下的为非运动达人,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:

运动达人

非运动达人

总计

35

60

26

总计

100

1)(i)将列联表补充完整;

ii)据此列联表判断,能否有的把握认为日平均走步数和性别是否有关

2)从样本中的运动达人中抽取7人参加幸运抽奖活动,通过抽奖共产生2位幸运用户,求这2位幸运用户恰好男用户和女用户各一位的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数,为常数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)当直线与曲线相切时,求出常数的值;

2)当为曲线上的点,求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面是梯形.BCADABBCCD1AD2

(Ⅰ)证明;ACBP

(Ⅱ)求直线AD与平面APC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在平面直角坐标系中,曲线的参数方程为为参数,),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.

(1)设是曲线上的一个动眯,当时,求点到直线的距离的最小值;

(2)若曲线上所有的点都在直线的右下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点与短轴的一个端点的连线构成面积为的等腰直角三角形.

1)求椭圆E的标准方程;

2)直线与椭圆交于点AB,线段的中点为M,射线MO与椭圆交于点P,点O的重心,试问:的面积S是否为定值,若是,求出这个值;若不是,求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中都是青年人.

(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:

(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?

(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1求函数的单调区间;

2若不等式区间上恒成立,求实数的取值范围;

3求证:

查看答案和解析>>

同步练习册答案