精英家教网 > 高中数学 > 题目详情
13.求π的近似值可用如下公式$\frac{π}{6}$=$\frac{1}{{1}^{2}}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{n}^{2}}$,直到第n项的值小于0.00001为止,最后一项不计入求和,然后求π的近似值,写出程序,并画出程序框图.

分析 可以先将$\frac{1}{{1}^{2}}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{n}^{2}}$逐项累加,然后用其和sum乘以6,再开方即可,要注意循环终止条件的作用.

解答 解:程序如下:
i=1
sum=0
t=1/i^2
WHILE t>=0.00001
    sum=sum+t
    i=i+1
    t=1/i^2
WEND
π=SQR(sum*6)
PRINT“π=“:π
END
框图如右图所示:

点评 本题主要考查设计程序框图解决实际问题.在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构.循环结构要在某个条件下终止循环,这就需要条件分支结构来判断.在循环结构中都有一个计数变量和累加变量.计数变量用于记录循环次数,累加变量用于输出结果,计数变量和累加变量一般是同步执行的,累加一次,计数一次.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知p:“?x0∈R,使得x02+mx0+2m-3<0”;q:命题“?x∈[1,2],x2-m≤0”,若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.满足A⊆{0,1,2,3,4,5}的非空集合A的个数是31个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$\frac{\sqrt{9-{3}^{x}}}{lg(x+1)}$的定义域为{x|-1<x≤2,且x≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某批发站全年分批购入每台价值为3000元的电脑共4000台,每批都购入x台,且每批均需付运费360元,储存电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比,若每批购入400台,则全年需用去运费和保管费共43600元,现在全年只有24000元资金可以用于支付这笔费用,请问能否恰当安排进货数量使资金够用?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一船向正北航行,到达B处时,看见正西方向有相距10海里的两个灯塔C、D恰好与它在一条直线上,继续航行1小时后到达A处,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向(如图所示),则这只船的速度是5海里/小时.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式|x|(a-x)≥9在x∈[2,+∞)总有解,则a的范围是[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知x满足-3≤log${\;}_{\frac{1}{2}}$x≤$\frac{1}{2}$,f(x)=log2$\frac{x}{4}$log2$\frac{x}{2}$,
(1)令t=log2x,求t的取值范围;
(2)求f(x)的最大值和最小值及相对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过点P(1,2)作圆(x+1)2+(y+1)2=1的两条切线,切点分别为A,B,则$\overrightarrow{PA}$•$\overrightarrow{PB}$=(  )
A.$\frac{121}{12}$B.$\frac{125}{12}$C.$\frac{131}{13}$D.$\frac{132}{13}$

查看答案和解析>>

同步练习册答案