精英家教网 > 高中数学 > 题目详情

已知函数f (x)=ax+数学公式-3ln x.
(1)当a=2时,求f (x) 的最小值;
(2)若f (x)在[1,e]上为单调函数,求实数a的取值范围.

解:(1)当a=2时,f(x)=2x+-3lnx
f'(x)=2--=
令f'(x)=0得x=2或-(∵x>0,舍去负值)
∴当a=2时,函数f(x)的最小值为5-3ln2.(6分)

(2)∵f'(x)=
令h(x)=ax2-3x-a=a(x-2-
要使f(x)在[1,e]上为单调函数,
只需f'(x)在(1,e)内满足:f'(x)≥0或f'(x)≤0恒成立,且等号只在孤立点取得.
∵h(1)=-3<0
∴h(e)=ae2-3e-a≤0
∴a≤
①当0≤a≤时,f'(x)≤0恒成立
②当a<0时,x=∉[1,e],
∴h(x)<0(x∈[1,e])
∴f'(x)<0,符合题意.
综上可知,当a≤时,f(x)在[1,e]上为单调函数.(14分)
分析:(1)当a=2时,f(x)=2x+-3lnx,求导得f'(x)=2--=,因为定义域为开区间,求得极值即为最值.
(2)先求f'(x)=,再由“f(x)在[1,e]上为单调函数”转化为“f'(x)≥0或f'(x)≤0在[1,e]上恒成立”,最后转化为最值法求解.
点评:本题主要考查用导数法研究函数的单调性,基本思路是:当函数为增函数时,导数大于等于零;当函数为减函数时,导数小于等于零,已知单调性求参数的范围往往转化为求相应函数的最值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案