【题目】已知函数f(x)=|ax-2|.
(1)当a=2时,解不等式f(x)>x+1;
(2)若关于x的不等式f(x)+f(-x)< 有实数解,求m的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆: 的离心率为, 、为椭圆的左右顶点,焦点到短轴端点的距离为2, 、为椭圆上异于、的两点,且直线的斜率等于直线斜率的2倍.
(Ⅰ)求证:直线与直线的斜率乘积为定值;
(Ⅱ)求三角形的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在极坐标系和直角坐标系中,极点与直角坐标系的原点重合,极轴与轴的非负半轴重合,曲线的极坐标方程为,曲线的参数方程为(为参数).
(1)求曲线的直角坐标方程和曲线的普通方程;
(2)判断曲线与曲线的位置关系,若两曲线相交,求出两交点间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )
A. B. 9 C. 18 D. 36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,五面体ABCDE,四边形ABDE是矩形,△ABC是正三角形,AB=1,AE=2,F是线段BC上一点,直线BC与平面ABD所成角为30°,CE∥平面ADF.
(1)试确定F的位置;
(2)求三棱锥A-CDF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知AB是圆O的直径,C,D是圆上不同两点,且CD∩AB=H,AC=AD,PA⊥圆O所在平面.
(Ⅰ)求证:PB⊥CD;
(Ⅱ)若PB=,∠PBA=,∠CAD=,求H到平面PBD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方程f(x)+2=的实数x为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量a=(sin x,mcos x),b=(3,-1).
(1)若a∥b,且m=1,求2sin2x-3cos2x的值;
(2)若函数f(x)=a·b的图象关于直线对称,求函数f(2x)在上的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com