精英家教网 > 高中数学 > 题目详情

若关于x的方程数学公式的正实数解有且仅有一个,那么实数a的取值范围为


  1. A.
    a≤0
  2. B.
    a≤1
  3. C.
    a≤1或a=2
  4. D.
    a≤0或a=2
D
分析:由函数的定义域为(-∞,0)∪(0,+∞),故我们可将关于x的方程 有且仅有一个正实数解,转化为方程ax3-3x2+1=0有且仅有一个正实数解,求出函数的导函数后,分类讨论函数的单调性,即可得到答案.
解答:由函数解析式可得:x≠0,
如果关于x的方程 有且仅有一个正实数解,即方程ax3-3x2+1=0有且仅有一个正实数解,
构造函数f(x)=ax3-3x2+1,则函数f(x)的图象与x正半轴有且仅有一个交点.
又∵f'(x)=3x(ax-2)
①当a=0时,代入原方程知此时仅有一个正数解 满足要求;
②当a>0时,则得f(x)在(-∞,0)和( ,+∞)上单调递增,在(0, )上单调递减,
f(0)=1,知若要满足条件只有x=2a时,f(x)取到极小值0,x=入原方程得到正数解a=2,满足要求;
③当a<0时,同理f(x)在(-∞,)和(0,+∞)上单调递减,在( ,0)上单调递增,
函数的极大值f(0)=1>0,f(x)=0有1正根,a<0满足条件
综上可得a≤0,a=2
故选:D
点评:本题考查的知识点是根的存在性及根的个数判断,其中根据函数的定义域,将分式方程根的个数问题转化为整式方程根的个数问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x的方程x2+4=ax有正实根,则实数a的取值范围是
a≥4
a≥4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(x>0).
(1)当a=1时,求f(x)在[
1
2
,2]上的最小值;
(2)若函数f(x)在[
1
2
,+∞)上为增函数,求正实数a的取值范围;
(3)若关于x的方程1-x+2xlnx-2mx=0在区间[
1
e
,e]内恰有两个相异的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的方程x2-mx-1=0 有两个实根α、β,且α<β.定义函数f(x)=
2x-m
x2+1

(1)求αf(α)+βf(β) 的值;
(2)判断f(x) 在区间(α,β) 上的单调性,并加以证明;
(3)若λ,μ 为正实数,求证:|f(
λα+μβ
λ+μ
)-f(
μα+λβ
λ+μ
)|<|f(α)-f(β)|

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(x+4)=f(x),f(x)=
-x2+1  -1≤x≤1
log2(-|x-2|+2) ,1<x≤3
,若关于x的方程f(x)-ax=0有5个不同实根,则正实数a的取值范围是(  )
A、(
1
4
1
3
)
B、(
1
6
1
4
)
C、(16-6
7
1
6
)
D、(
1
6
,8-2
15
)

查看答案和解析>>

科目:高中数学 来源:2012届度湖南省高三下学期二轮复习理科数学试卷 题型:解答题

已知函数在点处取得极值。

(1)求实数a的值;

(2)若关于x的方程在区间[0,2]上有两个不等实根,求b的取值范围;

(3)证明:对于任意的正整数,不等式

 

查看答案和解析>>

同步练习册答案