精英家教网 > 高中数学 > 题目详情
6.在等差数列{an}中,若a4+a6+a8+a10+a12=120,则a7-$\frac{1}{3}$a5的值为(  )
A.8B.12C.16D.72

分析 {an}为等差数列,设首项为a1和公差为d,则已知等式就为a1与d的关系等式,所求式子也可用a1和d来表示.

解答 解:∵{an}为等差数列且a4+a6+a8+a10+a12=5a1+35d=120,
∴a1+7d=24,
∴${a_7}-\frac{1}{3}{a_5}$=$\frac{2}{3}$(a1+7d)=16.
故选:C.

点评 此题主要考查了等差数列的通项公式,关键要熟悉公式并熟练运用公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.直线l:y-3=k(x+1)必经过定点(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某游轮在A处看灯塔B在A的北偏东75°,距离为12$\sqrt{6}$海里,灯塔C在A的北偏西30°,距离为8$\sqrt{3}$海里,游轮由A向正北方向航行到D处时再看灯塔B在南偏东60°则C与D的距离为(  )
A.20海里B.8$\sqrt{3}$海里C.23$\sqrt{2}$海里D.24海里

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意的实数m,直线y=mx+n-1与椭圆x2+4y2=1恒有公共点,则n的取值范围是(  )
A.$[\frac{1}{2},\frac{3}{2}]$B.$(\frac{1}{2},\frac{3}{2})$C.$[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$D.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.log0.32.1<3-0.3<2-0.3<log0.40.3
B.log0.32.1<2-0.3<3-0.3<log0.40.3
C.log0.40.3<log0.32.1<3-0.3<2-0.3
D.log0.32.1<2-0.3<log0.40.3<3-0.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.当x满足log${\;}_{\frac{1}{2}}$(3-x)≥-2时,求函数y=4-x-2-x+1的最值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列各组函数表示同一函数的是(  )
A.$f(x)=\sqrt{x^2},g(x)={(\sqrt{x})^2}$B.$f(x)=\sqrt{x^2},g(x)=|x|$
C.f(1)=1,g(x)=x0D.$f(x)=x+1,g(x)=\frac{{{x^2}-1}}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{3}$=1是焦点在x轴上的椭圆,命题q:x2-mx+1=0有两个不相等的实数根.若p∧q为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.曲线$\sqrt{(x+1)^{2}+{y}^{2}}$+$\sqrt{(x-1)^{2}+{y}^{2}}$=4的四个顶点连结而成的四边形面积是4$\sqrt{3}$.

查看答案和解析>>

同步练习册答案