精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

【答案】(1)(2)33.

【解析】分析:(1)用代入法或加减法可消去参数得曲线的直角坐标方程,由公式可化曲线的极坐标方程为直角坐标方程;

(2))将曲线的参数方程标准化为为参数,)代入曲线,由对应的参数为,由题意得,分类代入可求得值 .

详解:(1)的参数方程,消参得普通方程为

的极坐标方程化为两边同乘

(2)将曲线的参数方程标准化为为参数,)代入曲线,由

对应的参数为,由题意得

时,,解得

时,解得

综上:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则试验结束.

(1)求第一次试验恰摸到一个红球和一个白球概率;

(2)记试验次数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现将甲、乙、丙、丁四个人安排到座位号分别是的四个座位上,他们分别有以下要求,

甲:我不坐座位号为的座位;

乙:我不坐座位号为的座位;

丙:我的要求和乙一样;

丁:如果乙不坐座位号为的座位,我就不坐座位号为的座位.

那么坐在座位号为的座位上的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区为了解居民参加体育锻炼的情况,从该社区随机抽取了18名男性居民和12名女性居民,对他们参加体育锻炼的情况进行问卷调查.现按是否参加体育锻炼将居民分成两类:甲类(不参加体育锻炼)、乙类(参加体育锻炼),结果如下表:

甲类

乙类

男性居民

3

15

女性居民

6

6

(Ⅰ)根据上表中的统计数据,完成下面的列联表;

男性居民

女性居民

总计

不参加体育锻炼

参加体育锻炼

总计

(Ⅱ)通过计算判断是否有90%的把握认为参加体育锻炼与否与性别有关?

附:,其中.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某中学联盟举行了一次盟校质量调研考试活动,为了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为分,得分取正整数,抽取学生的分数均在之内)作为样本(样本容量为)进行统计,按照的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在的数据)

(Ⅰ)求样本容量和频率分布直方图中的的值;

(Ⅱ)在选取的样本中,从成绩在分以上(含分)的学生中随机抽取名学生参加省级学科基础知识竞赛,求所抽取的名学生中恰有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,圆,定点,点是圆上一动点,线段的垂直平分线交圆的半径于点,点的轨迹为

Ⅰ)求曲线的方程;

Ⅱ)不垂直于轴且不过点的直线与曲线相交于两点,若直线的斜率之和为0,则动直线是否一定经过一定点?若过一定点,则求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形是矩形,平面 平面,点分别为中点.

(1)求证: 平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式.

1)不等式的解集为,求实数的值;

2)在(1)的条件下,求不等式的解集;

3)解关于的不等式.

查看答案和解析>>

同步练习册答案