精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当x>0时,证明

(2)当x>-1且x0时,不等式 恒成立,求实数k的值.

【答案】(1)详见解析;(2).

【解析】

试题(1)构造函数,利用导数证明即可;(2)变形后构造函数,利用导数研究函数的单调性,如果导函数研究困难,可以再对导函数求导研究.

(1)令 ,则

当x>0时,有 ,则 是增函数,

从而,时,得证。 5分

(2)不等式可化为

,则

当x>0时,有 ,令 ,则

上是减函数,即

因此, 上是减函数,从而

所以,当 时,对应x>0,有

当-1<x<0时,由

,则

上是增函数,即

因此,上是减函数。

从而,

所以,当时,对于,有 12分

综合①②,当时,在时,有 13分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数,设函数

(1)当时,求函数的单调区间;

(2)对任意均有的取值范围.

注:为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上周某校高三年级学生参加了数学测试,年级组织任课教师对这次考试进行成绩分析现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组;第二组;……;第六组,并据此绘制了如图所示的频率分布直方图.

1)估计这次月考数学成绩的平均分和众数;

2)从成绩大于等于80分的学生中随机选2名,求至少有1名学生的成绩在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列{an}anZ)的前n项和为Sn,记S1S2Sn中奇数的个数为bn

(1)若an=n,请写出数列{bn}的前5项;

(2)求证:a1为奇数,aii=234)为偶数数列{bn}是单调递增数列的充分不必要条件;

(3)若ai=bii=123,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD,E,F分别是CD,AD的中点,BE,CF交于点P.求证

(1)BECF;

(2)AP=AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的是(

A.以直角三角形的一边所在直线为旋转轴,其余各边旋转一周而形成的面所围成的几何体是一个圆锥

B.以直角梯形的一边所在直线为旋转轴,其余各边旋转一周而形成的面所围成的几何体是一个圆台

C.以平行四边形的一边所在直线为旋转轴,其余各边旋转一周而形成的面所围成的几何体是一个圆柱

D.圆面绕其一条直径所在直线旋转后得到的几何体是一个球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中

1)在等差数列中,的充要条件;

2)已知等比数列为递增数列,且公比为,若,则当且仅当

3)若数列为递增数列,则的取值范围是

4)已知数列满足,则数列的通项公式为

5)若是等比数列的前项的和,且;(其中是非零常数,),则A+B为零.

其中正确命题是_________(只需写出序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )

A. 甲的极差是29 B. 甲的中位数是24

C. 甲罚球命中率比乙高 D. 乙的众数是21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,且存在实常数,使得对于定义域内任意,都有成立,则称此函数具有性质

1)判断函数是否具有性质,若具有性质,则求出的值;若不具有性质,请说明理由;

2)已知函数具有性质且函数上的最小值为;当时,,求函数在区间上的值域;

3)已知函数既具有性质,又具有性质,且当时,,若函数,在恰好存在个零点,求的取值范围.

查看答案和解析>>

同步练习册答案