精英家教网 > 高中数学 > 题目详情

如图,在三棱柱中,侧棱垂直底面,
(1)求证:
(2)求二面角的大小。

(1)见解析
(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,平面依次是的中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,所在平面互相垂直,且,E、F、G分别为AC、DC、AD的中点.
(1)求证:平面BCG;
(2)求三棱锥D-BCG的体积.
附:椎体的体积公式,其中S为底面面积,h为高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°

(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.
(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC平面;(2)点M在直线EF上,且平面,求平面ACH与平面ACM所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的侧棱平面为等边三角形,侧面是正方形,的中点,是棱上的点.

(1)若是棱中点时,求证:平面;
(2)当时,求正方形的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,且异面直线所成的角等于.

(1)求棱柱的高;
(2)求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2014·海淀模拟)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中点.

(1)求证:A1B∥平面AEC1.
(2)求证:B1C⊥平面AEC1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB^平面PAD,△PAD是正三角形,  
DC//AB,DA=DC=2AB.
(1)若点E为棱PA上一点,且OE∥平面PBC,求的值;
(2)求证:平面PBC^平面PDC.

查看答案和解析>>

同步练习册答案