科目:高中数学 来源: 题型:解答题
如图,和所在平面互相垂直,且,,E、F、G分别为AC、DC、AD的中点.
(1)求证:平面BCG;
(2)求三棱锥D-BCG的体积.
附:椎体的体积公式,其中S为底面面积,h为高.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°
(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.
(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC平面;(2)点M在直线EF上,且平面,求平面ACH与平面ACM所成锐角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2014·海淀模拟)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中点.
(1)求证:A1B∥平面AEC1.
(2)求证:B1C⊥平面AEC1.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB^平面PAD,△PAD是正三角形,
DC//AB,DA=DC=2AB.
(1)若点E为棱PA上一点,且OE∥平面PBC,求的值;
(2)求证:平面PBC^平面PDC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com