【题目】已知函数.
(1)若在单调递增,求的值;
(2)当时,设函数的最小值为,求函数的值域.
【答案】(1).(2)
【解析】
(1)对函数进行求导得,由在单调递增,得,即 ,利用分析法,对进行分类讨论,即可得答案;
(2)利用隐零点法求出函数最小值为,得,利用导数研究函数令,的值域,即可得答案;
(1).
因为在单调递增,所以,即
(i)当时,,则需,故,即;
(ii)当时,,则;
(iii)当时,,则需,故,即.
综上述,.
(2).
因为,所以,所以在单调递增
又因为,
所以存在,使,
且当时,,函数单调递减;
当时,,函数单调递增.
故最小值为.
由,得,因此.
令,则,
所以在区间上单调递增.
又因为,且,
所以,即取遍的每一个值,
令,
则,
故函数在单调递增.
又,所以,故函数的值域为.
科目:高中数学 来源: 题型:
【题目】某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元.
(1)若选择生产线①,求生产成本恰好为18万元的概率;
(2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某外卖平台为提高外卖配送效率,针对外卖配送业务提出了两种新的配送方案,为比较两种配送方案的效率,共选取50名外卖骑手,并将他们随机分成两组,每组25人,第一组骑手用甲配送方案,第二组骑手用乙配送方案.根据骑手在相同时间内完成配送订单的数量(单位:单)绘制了如下茎叶图:
(1)根据茎叶图,求各组内25位骑手完成订单数的中位数,已知用甲配送方案的25位骑手完成订单数的平均数为52,结合中位数与平均数判断哪种配送方案的效率更高,并说明理由;
(2)设所有50名骑手在相同时间内完成订单数的平均数,将完成订单数超过记为“优秀”,不超过记为“一般”,然后将骑手的对应人数填入下面列联表;
优秀 | 一般 | |
甲配送方案 | ||
乙配送方案 |
(3)根据(2)中的列联表,判断能否有的把握认为两种配送方案的效率有差异.
附:,其中.
0.05 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知曲线:(为参数),曲线:(为参数),且,点P为曲线与的公共点.
(1)求动点P的轨迹方程;
(2)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为,求动点P到直线l的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆与圆相外切,且与直线相切.
(1)记圆心的轨迹为曲线,求的方程;
(2)过点的两条直线与曲线分别相交于点和,线段和的中点分别为.如果直线与的斜率之积等于1,求证:直线经过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是各项均为正数的等差数列,,是和的等比中项,的前项和为,.
(1)求和的通项公式;
(2)设数列的通项公式.
(i)求数列的前项和;
(ii)求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点与定点的距离和它到直线的距离的比是常数.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过坐标原点的直线交轨迹于,两点,轨迹上异于,的点满足直线的斜率为.
(ⅰ)证明:直线与的斜率之积为定值;
(ⅱ)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线和曲线的直角坐标方程;
(2)若点坐标为,直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com