精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若单调递增,求的值;

2)当时,设函数的最小值为,求函数的值域.

【答案】1.(2

【解析】

1)对函数进行求导得,由单调递增,得,即 ,利用分析法,对进行分类讨论,即可得答案;

2)利用隐零点法求出函数最小值为,得,利用导数研究函数令,的值域,即可得答案;

1

因为单调递增,所以,即

i)当时,,则需,故,即

ii)当时,,则

iii)当时,,则需,故,即

综上述,

2

因为,所以,所以单调递增

又因为

所以存在,使

且当时,,函数单调递减;

时,,函数单调递增.

最小值为

,得,因此

,则

所以在区间上单调递增.

又因为,且

所以,即取遍的每一个值,

故函数单调递增.

,所以,故函数的值域为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有AB两道独立运行的生产工序,且两道工序出现故障的概率依次是0.020.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若AB两道工序都出现故障,则生产成本增加5万元.生产线②:有ab两道独立运行的生产工序,且两道工序出现故障的概率依次是0.040.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若ab两道工序都出现故障,则生产成本增加13万元.

1)若选择生产线①,求生产成本恰好为18万元的概率;

2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知角始边与轴的非负半轴重合,与圆相交于点,终边与圆相交于点,点轴上的射影为 的面积为,函数的图象大致是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某外卖平台为提高外卖配送效率,针对外卖配送业务提出了两种新的配送方案,为比较两种配送方案的效率,共选取50名外卖骑手,并将他们随机分成两组,每组25人,第一组骑手用甲配送方案,第二组骑手用乙配送方案.根据骑手在相同时间内完成配送订单的数量(单位:单)绘制了如下茎叶图:

1)根据茎叶图,求各组内25位骑手完成订单数的中位数,已知用甲配送方案的25位骑手完成订单数的平均数为52,结合中位数与平均数判断哪种配送方案的效率更高,并说明理由;

2)设所有50名骑手在相同时间内完成订单数的平均数,将完成订单数超过记为“优秀”,不超过记为“一般”,然后将骑手的对应人数填入下面列联表;

优秀

一般

甲配送方案

乙配送方案

3)根据(2)中的列联表,判断能否有的把握认为两种配送方案的效率有差异.

附:,其中.

0.05

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线为参数),曲线为参数),且,点P为曲线的公共点.

1)求动点P的轨迹方程;

2)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为,求动点P到直线l的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆相外切,且与直线相切.

1)记圆心的轨迹为曲线,求的方程;

2)过点的两条直线与曲线分别相交于点,线段的中点分别为.如果直线的斜率之积等于1,求证:直线经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是各项均为正数的等差数列,的等比中项,的前项和为.

1)求的通项公式;

2)设数列的通项公式.

i)求数列的前项和

ii)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】与定点的距离和它到直线的距离的比是常数

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过坐标原点的直线交轨迹两点,轨迹上异于的点满足直线的斜率为

(ⅰ)证明:直线的斜率之积为定值;

(ⅱ)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求直线和曲线的直角坐标方程;

2)若点坐标为,直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

同步练习册答案