精英家教网 > 高中数学 > 题目详情
6.随着电子商务的发展,人们的购物习惯正在改变,基本上所有的需求都可以通过网络购物解决.小韩是位网购达人,每次购买商品成功后都会对电商的商品和服务进行评价.现对其近年的200次成功交易进行评价统计,统计结果如表所示.
对服务好评对服务不满意合计
对商品好评8040120
对商品不满意701080
合计15050200
(1)是否有99.9%的把握认为商品好评与服务好评有关?请说明理由;
(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行观察,求只有一次好评的概率.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (1)根据列联表计算K2,对照观测值表即可得出结论;
(2)利用分层抽样法抽取5次交易,计算好评的交易次数与不满意的次数,用列举法计算对应的概率值即可.

解答 解:(1)根据列联表计算${K^2}=\frac{{200×{{(80×10-40×70)}^2}}}{150×50×120×80}≈11.111>10.828$,
对照观测指表得:有99.9%的把握认为商品好评与服务好评有关;
(2)由表格可知对商品的好评率为$\frac{3}{5}$,
若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,
则好评的交易次数为3次,不满意的次数为2次,
令好评的交易为A,B,C,不满意的交易a,b,
从5次交易中,取出2次的所有取法为:
(A,B),(A,C),(A,a),(A,b),
(B,C),(B,a),(B,b),
(C,a),(C,b),(a,b),共计10种情况,
其中只有一次好评的情况是:
(A,a),(A,b),(B,a),(B,b),
(C,a),(C,b),共计6种情况.
因此,只有一次好评的概率为P=$\frac{6}{10}=\frac{3}{5}$.

点评 本题考查了独立性检验的应用问题,也考查了分层抽样与列举法求随机变量的概率问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-(-1)n2alnx(n∈Z,a>0).
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若n=2016,且函数y=2ax-f(x)有唯一零点x0,求x0与a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不等式x2-2x+5-2a≥0.
(1)若不等式对于任意实数x恒成立,求实数a的取值范围;
(2)若存在实数a∈[4,$\sqrt{2016}}$]使得该不等式成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=cos2x+3sinx的值域是(  )
A.$[{-4,\frac{17}{8}}]$B.$(-∞,-4)∪(\frac{17}{8},+∞)$C.[-4,4]D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P为AB边上一动点,PD∥BC交AC于点D,现将△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD,当棱锥A′-PBCD的体积最大时,PA的长为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合U={1,2,3,4,5,6},M={1,3,4},则∁UM(  )
A.{3,5,6}B.{1,3,5}C.{2,5,6}D.U

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的中位数为(  )
A.10B.11C.12D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义城为(-1,1)的函数f(x)的导函数为f′(x)=5+cosx,且f(0)=0.如果f(1-x)+f(1-x2)<0,则实数x的取值范围为(  )
A.(0,1)B.(1,$\sqrt{2}$)C.(0,2)D.(0,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图四棱锥P-ABCD中,底面ABCD为平行四边形,∠ABC=60°,AD=2,AB=PA=1,且PA⊥平面ABCD.
(1)请判定PB与AC的位置关系,并证明;
(2)求顶点A到平面PCD的距离.

查看答案和解析>>

同步练习册答案