精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PA⊥底面ABCD,PA=4,M为PA的中点,N为AB的中点.

(1)求三棱锥P-CDM的体积;
(2)求二面角A-DN-M的余弦值.

解:(1)∵PA⊥平面ABCD, ∴PA⊥CD
又∵CD⊥AD,AD∩PA=A
∴CD⊥平面PAD,即CD⊥平面PDM

(2)过A作AF⊥DN于F,连结MF,
∵AF⊥DN,MA⊥DN,AF∩MA="A" ∴DN⊥面AFM
∴MF⊥DN, ∴∠MFA为二面角A-DN-M的平面角.
中,


∴在中, 

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,,AB=PA=2,E.F分别为BC.PD的中点。

(Ⅰ)求证:PB//平面AFC;
(Ⅱ)求平面PAE与平面PCD所成锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,


(Ⅰ)求证:
(Ⅱ)在上找一点,使得平面,请确定点的位置,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图,在直三棱柱(侧棱与底面垂直的三棱柱)中,边的中点.
(Ⅰ)求证:;                                    
(Ⅱ)求证:∥面. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本题满分14分)
在多面体中,点是矩形的对角线的交点,三角形是等边三角形,棱
(Ⅰ)证明:平面
(Ⅱ)设
与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图所示,正方形和矩形所在的平面相互垂直,已知.
(Ⅰ)求证:平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)

如图,在中,分别为的中点,的延长线交。现将沿折起,折成二面角,连接.
(I)求证:平面平面
(II)当时,求二面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)   如图5,已知直角梯形所在的平面

垂直于平面
.    (1)在直线上是否存在一点,使得
平面?请证明你的结论;
(2)求平面与平面所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图甲所示,在正方形中,EF分别是边的中点,D是EF的中点,现沿SESFEF把这个正方形折成一个几何体(如图乙所示),使三点重合于点G,则下面结论成立的是( )
A.SD⊥平面EFG B.GF⊥平面SEF C.SG⊥平面EFG D.GD⊥平面SEF

查看答案和解析>>

同步练习册答案