精英家教网 > 高中数学 > 题目详情
8.已知抛物线${y^2}=\frac{2}{3}x$的焦点为F,过点F的直线交抛物线于A,B两点.
(1)若$\overrightarrow{AF}=3\overrightarrow{FB}$,求直线AB的斜率;
(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.

分析 (1)设直线$AB:x=my+\frac{1}{6}$,将直线AB与抛物线联立,设A(x1,y1),B(x2,y2),由韦达定理业绩向量关系,求解直线的斜率即可.
(2)利用三角形的面积公式以及弦长公式,结合二次函数的性质求解函数的最小值即可.

解答 (12分)解:(1)依题意可设直线$AB:x=my+\frac{1}{6}$,
将直线AB与抛物线联立$\left\{\begin{array}{l}x=my+\frac{1}{6}\\{y^2}=\frac{2}{3}x\end{array}\right.$⇒9y2-6my-1=0
设A(x1,y1),B(x2,y2),由韦达定理得$\left\{\begin{array}{l}{y_1}+{y_2}=\frac{2}{3}m\\{y_1}{y_2}=-\frac{1}{9}\end{array}\right.$
∵$\overrightarrow{AF}=3\overrightarrow{FB}⇒{y_1}=-3{y_2}$,$⇒{m^2}=\frac{1}{3}$,
∴斜率为$\sqrt{3}$或$-\sqrt{3}$.-------(6分)
(2)${S_{OACB}}=2{S_{△AOB}}=2•\frac{1}{2}|{OF}||{{y_1}-{y_2}}|=\frac{1}{6}×|{{y_1}-{y_2}}|=\frac{1}{6}\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}=\frac{1}{6}\sqrt{\frac{4}{9}{m^2}+\frac{4}{9}}≥\frac{1}{6}×\frac{2}{3}=\frac{1}{9}$
当m=0时,四边形OACB的面积最小,最小值为$\frac{1}{9}$.-------(12分)

点评 本题考查直线与抛物线的位置关系的应用,设而不求以及二次函数的性质的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C的对边分别为a,b,c,已知$\overrightarrow{m}$=(2b,1).$\overrightarrow{n}$=(ccosA+acosC,cosA),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角A的值;
(2)若b,a,c成等比数列.且△ABC的外接圆半径R=$\sqrt{3}$.试求△ABC的内切圆半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{y^2}{3}-\frac{x^2}{6}=1$的一个焦点坐标为(  )
A.(3,0)B.(0,3)C.$(\sqrt{3},0)$D.$(0,\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某农场所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了2017年2月1日至2月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表:
日期2月1日2月2日2月3日2月4日2月5日
温差x(°C)101113128
发芽数x(颗)2325302616
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的两组数据进行检验.
(Ⅰ)求选取的2组数据恰好是不相邻的2天数据的概率;
(Ⅱ)若选取的是2月1日与2月5日的两组数据,请根据2月2日至2月4日的数据,求出y关于x的线性回归方程
$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;可以预报当温差为20℃时,种子发芽数.
附:回归直线方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;$\stackrel{∧}{b}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P(3,$\frac{5}{2}$)为双曲线上一点,若△PF1F2的内切圆的半径为1,则双曲线的方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆${C_1}:{({x-4})^2}+{({y-2})^2}=20$与y轴交于O,A两点,圆C2过O,A两点,且直线C2O与圆C1相切;
(1)求圆C2的方程;
(2)若圆C2上一动点M,直线MO与圆C1的另一交点为N,在平面内是否存在定点P使得PM=PN始终成立,若存在求出定点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到直线x=-1的距离之和的最小值是(  )
A.5B.8C.$\sqrt{17}-1$D.$\sqrt{15}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.先按照同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)求出f(6)的值;
(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线的方程为y=2px2且过点(1,4),则抛物线的焦点坐标为(  )
A.(1,0)B.$(\frac{1}{16},0)$C.$(0,\frac{1}{16})$D.(0,1)

查看答案和解析>>

同步练习册答案