精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知点为平面上一动点,到直线的距离为.

)求点的轨迹的方程;

)不过原点的直线交于两点,线段的中点为,直线与直线交点的纵坐标为1,求面积的最大值及此时直线的方程.

【答案】面积的最大值为,此时直线的方程为.

【解析】

试题分析:()直接法求动点轨迹方程,先设动点坐标,再两点间距离公式及点到直线距离公式将条件用坐标表示,化简整理成椭圆标准方程;)涉及弦中点问题,一般利用点差法求弦中点坐标与直线斜率的关系,本题由于弦中点与原点连线的斜率已知,所以可得弦所在直线斜率 .根据直线方程与椭圆方程联立方程组,结合韦达定理、弦长公式可得三角形底边长(用直线在 轴上截距表示),再根据点到直线距离公式可得高(用直线在 轴上截距表示),利用三角形面积公式可得面积关于直线在 轴上截距的函数关系式,最后根据基本不等式求最值,确定直线在 轴上截距,可得直线方程.

试题解析:解:()由题意:

,即

化简整理得:

所求曲线的方程为.

)易得直线的方程:,.其中

在椭圆上,

,所以

设直线的方程为:.

联立:.整理得.

直线与椭圆有两个不同的交点且不过原点,

,解得:

由韦达定理:

.

到直线的距离为:.

.

当且仅当时等号成立,满足(*)式

所以面积的最大值为,此时直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是(
A.(x﹣2)2+(y﹣1)2=1
B.(x﹣2)2+(y+1)2=1
C.(x+2)2+(y﹣1)2=1
D.(x﹣3)2+(y﹣1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点和直线相切.

(1)求圆的方程;

(2)若直线经过点,并且被圆截得的弦长为2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:

①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行,

②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面,

③如果两条直线都平行于一个平面,那么这两条直线互相平行,

④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直.

其中真命题的个数是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,.

1)证明: A1BD // 平面CD1B1;

2)求三棱柱ABDA1B1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过原点且与直线相切于点

(Ⅰ)求圆的方程;

(Ⅱ)在圆上是否存在两点关于直线对称,且以线段为直径的圆经过原点?若存在,写出直线的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱则异面直线所成角的余弦值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,过点的直线交椭圆于两点 中点连接并延长交椭圆于点记直线的斜率为分别为.

(Ⅰ)求椭圆方程;

(Ⅱ)当为直角时的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1中, DAB的中点.

(Ⅰ)求证:CD平面ABB1A1

(Ⅱ)求证:BC1∥平面A1CD.

查看答案和解析>>

同步练习册答案