精英家教网 > 高中数学 > 题目详情
A.(坐标系与参数方程选做题)在极坐标系中,点P(2,
2
)
到直线l:3ρcosθ-4ρsinθ=3的距离为
1
1
. 
B.(几何证明选讲选做题)已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R的长为
3
3
分析:A.求出在直角坐标系中点P和直线l的普通方程,由此能求出P到l的距离.
B.由PA是⊙O的切线,知∠PAB=∠C,由∠APB=∠CPA,知△PAB∽△PCA,由此能求出圆O的半径R的长.
解答:A.解:极坐标系中的点P(2,
2
)
在直角坐标系中为P(0,-2),
∵直线l:3ρcosθ-4ρsinθ=3,
直线l的普通方程:3x-4y-3=0,
所以P到l的距离:d=
|3×0-4×(-2)-3|
32+42
=1

故答案为:1.
B.解:如图,∵PA是⊙O的切线,
∴∠PAB=∠C,
又∵∠APB=∠CPA,∴△PAB∽△PCA,
PA
AC
=
PB
AB
,即
PA
2R
=
PB
AB

R=
PA•AB
2PB
=
22-12
2×1
=
3

故答案为:
3
点评:第A题考查极坐标方程与普通方程的互化,是基础题.解题时要认真审题,注意点到直线距离公式的应用.
第B题考查与圆有关的比例线段的应用,解题时要认真审题,仔细解答,注意到三角形相似的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(注意:请在下列二题中任选一题作答,如果多做,则按所做的第一题评分)
A、(坐标系与参数方程选做题)在极坐标系中,若过点A(3,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=
2
3
2
3

B、若不等式|2a-1|≤|x+
1
x
|
对一切非零实数x恒成立,则实数a的取值范围是
[-
1
2
3
2
]
[-
1
2
3
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(坐标系与参数方程选做题)在直角坐标系x0y中,以原点为极点,x轴非负半轴为极轴建立极坐标系,已知圆C与直线l的方程分别为:ρ=2sinθ,
x=x0+
2
t
y=
2
t
(t为参数).若圆C被直线l平分,则实数x0的值为
-1
-1

(B)(不等式选做题)若关于x的不等式|x-m|<2成立的充分不必要条件是2≤x≤3,则实数m的取值范围是
(1,4)
(1,4)

(C) (几何证明选讲) 如图,割线PBC经过圆心O,OB=PB=1,OB绕点O逆时针旋转120°到OD,连PD交圆O于点E,则PE=
3
7
7
3
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:只能从下列A、B、C三题中选做一题,如果多做,则按第一题评阅记分)
A.(坐标系与参数方程选做题)曲线
x=cosα
y=1+sinα
(α为参数)与曲线ρ2-2ρcosθ=0的交点个数为
2
2

B.(不等式选讲选做题)设函数f(x)=
|x+1|+|x-2|-a
,若函数f(x)的定义域为R,则实数a的取值范围是
(-∞,3]
(-∞,3]

C.(几何证明选讲选做题)如图,从圆O外一点A引圆的切线AD和割线ABC,已知AC=6,圆O的半径为3,圆心O到AC的距离为
5
,则AD=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

A:(坐标系与参数方程选做题)在极坐标系中,由θ=0,θ=
π
3
,ρcosθ+ρsinθ=1围成图形的面积是
3-
3
4
3-
3
4

B:(几何证明选讲选做题)如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于
16π
16π

C:(不等式选讲)要使关于x的不等式|x-1|+|x-1|≤3在实数范围内有解,则a的取值范围是
[-2,4]
[-2,4]

查看答案和解析>>

同步练习册答案